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From calculus we know that a derivative of a a function f(x) can be approximated using a
difference quotient. There are different forms of the difference quotient, such as the forward
difference (most common), backward difference and centered difference. I will introduce and
discuss “Mickens differences,” which are decidedly different differences for approximating
the derivatives in differential equations. Professor Ronald Mickens is an African-American
Physics Professor at Clark Atlanta University who has written nearly 150 journal articles
on this topic. These nonstandard finite differences can produce discrete solutions to a wide
variety of differential equations with improved accuracy over standard numerical techniques.
Applications drawn from first-semester Calculus to advanced computation fluid dynamics
will be given.

Students are very welcome to attend. Knowledge of elementary derivatives/anti-derivatives
and Taylor Approximations will be assumed.
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OUTLINE

1. Approximating derivatives

2. Being discrete

3. A simple example (initial value problem)

4. A harder example (m = 0 boundary value
problem)

5. Another example (m > 0 boundary value
problem)

6. Ending with a (sonic) boom
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What’s the difference between a curve and a line? (This
is not a “trick” question)

The name of the quantity which determines whether a
graph will be a line or a curve is called the

We can find the slope of a line by computing
∆y

∆x

We can find the slope of a curve by ... ?
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The forward difference formula for f(′x) is given by

f ′(x) ≈ f(x + h) − f(x)

(x + h) − x
=
f(x + h) − f(x)

h

The backward difference formula is

f ′(x) ≈ f(x) − f(x− h)

h

The centered difference formula is

f ′(x) ≈ f(x + h) − f(x− h)

2h
One way to show that these formulas “work” is to apply
Taylor Expansions...
If a function f(x) is infinitely differentiable at a point
x = a then the Taylor Expansion for the value f(t)
about the point (a, f(a)) is given by...

f(t) ≈ f(a) + f ′(a)(t− a) + f ′′(a)
(t− a)2

2
+ ...

With a change of variables t→ x + h and a→ x

f(x + h) ≈ f(x) + f ′(x)h + f ′′(x)
h2

2
+ ...

f(x− h) ≈ f(x) − f ′(x)h + f ′′(x)
h2

2
+ ...
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Discrete Analogue
Split up an interval a ≤ x ≤ b into N equal pieces, so

h =
b− a

N
and xk = a + kh for k = 1, 2, . . . , N

Let

uk = f(xk)

uk+1 = f(xk+1) = f(xk + h)

uk−1 = f(xk−1) = f(xk − h)

Discrete Forward Difference

du

dx
≈ uk+1 − uk

h

Discrete Backward Difference

du

dx
≈ uk − uk−1

h

Discrete Centered Difference

du

dx
≈ uk+1 − uk−1

2h

We can use these formulas to approximate derivatives in
differential equations to produce difference equations
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Exponential Example
Consider the initial value problem (IVP)

dy

dx
= y, y(0) = 1

We know the exact solution is y(x) =

The discrete version of the exact solution is yk =

We can solve the IVP by discretizing the initial value
problem.
Using a standard finite-difference scheme the discrete form
of the IVP becomes

yk+1 − yk
h

= yk, for k = 1, 2, . . . , N and y0 = 1

which when rearranged or solved becomes

yk+1 − yk = ykh⇒ yk+1 = yk + hyk = yk(1 + h)

Applying the initial condition at k=0

y1 = y0(1 + h) = 1 + h

when k = 1

y2 = y1(1 + h) = (1 + h)(1 + h) = (1 + h)2

when k = 2

y3 = y2(1 + h) = (1 + h)(1 + h)2 = (1 + h)3

Therefore

yk = (1 + h)k, k = 0, 1, 2, . . . N
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Numerical Error
How accurate was the solution generated by the standard
finite difference scheme?
The exact solution to the differential equation (ODE)
y′ = y, y(0) = 1 is

y(x) = ex

which has a discrete analogue given by

yk = ekh

The solution to the related difference equation (O∆E)
was

yk = (1 + h)k, k = 0, 1, 2, . . . N

The error εk at any point xk = kh is given by

εk = y(xk) − yk = ehk − (1 + h)k

At k = 0 there is no error:

ε0 = e0 − (1 + h)0 = 1 − 1 = 0

At k = 1

ε1 = eh − (1 + h)1 = (1 + h +
h2

2
+ ...) − (1 + h)

=
h2

2
+ ...

At k = 2

ε1 = e2h − (1 + h)2 = (1 + 2h +
(2h)2

2
+ ...) − (1 + h)2

= (1 + 2h + 2h2 + ...) − (1 + 2h + h2)

= h2 + ...
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Numerical Results for N = 10
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Different Differences
Professor Ronald Mickens of Clark Atlanta University has
suggested a different way to approximate the derivative

f ′(x) ≈ f(x + φ1(h)) − f(x)

φ2(h)
, where φn = h + ...

Note that as h → 0 the above difference quotient yields
f ′(x) exactly as the standard formulae do.

The discrete analogue of Mickens’ suggestion is

dy

dx
≈ yk+1 − ψyk

φ(h)
, where ψ = 1+... and φ(h) = h+...

The beauty of this idea is that it gives us more flexibility
to tailor our approximation technique to the particular
differential equation we’re trying to discretize.

Most often ψ = 1 and we need to choose a denomina-
tor function φ(h)

φ(h) =




h,
sin(h),
eh − 1,
1 − e−h,
h

1 − h
,

1 − e−λh

λ
,

...
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Application of a Mickens Difference

Suppose we reconsider the ODE
dy

dx
= y, y(0) = 1.

How do we make our choice of denominator function?
There are no firm rules which direct you in every case.
In this simple example we know the exact solution looks
exponential so we should try a choice with this functional
behavior

φ(h) = eh − 1

Our related difference equation (O∆E) would become

yk+1 − yk
eh − 1

= yk, y0 = 1

which can be rearranged to be

yk+1 = yk + φ(h)yk = yk + yk(e
h − 1) ⇒ yk+1 = ehyk

Applying the initial condition at k = 0

y1 = y0e
h

When k = 1,

y2 = y1e
h = eheh = e2h

When k = 2,

y3 = y2e
h = ehe2h = e3h

Therefore,

yk = ekh, k = 0, 1, 2, . . . , N

is the discrete version of the solution to the ODE pro-
duced using the Mickens finite difference scheme.
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Error due to the Mickens Difference Method
Recall that the error εk at any point xk = kh is given by

εk = y(xk) − yk

The exact solution to the ODE is y(x) = ex

The solution to the difference equation generated by us-
ing a standard finite-difference discretization of the ODE
was yk = (1 + h)k

The solution to the difference equation generated by using
the nonstandard discretization of the ODE is yk = ekh.

Thus the numerical error of the Mickens scheme is given
by

εk = exk − ekh = ekh − ekh = 0

In other words, by making a good choice of denomina-
tor function one can produce a difference equation which
represent an exact discrete version of the solution of the
differential equation.

We have been able to “approximate” the differential equa-
tion exactly!

Was this a fluke? No!
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Applications of Mickens Differences
Consider the following boundary value problem in cylin-
drical coordinates for the function u(r)

1

r

d

dr


r
du

dr


 −m2u = 0, m constant

r
du

dr

∣∣∣∣∣∣∣r=0
= S,

u(1) = G.

When m = 0 the ODE becomes

d

dr


r
du

dr


 = 0

with the conditions

u(r) = G at r = 1 and r
du

dr
= S at r = 0

Recall, if
d

dr
( ) = 0 ↔ ( ) = constant

Therefore r
du

dr
=

The exact solution u(r) of the boundary value problem is

u(r) = S log(r) +G

Check:
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Applying Standard Finite Differences
We can write our boundary value problem from before
as the initial value problem that we actually solved and
then use our discretization technique....

r
du

dr
= S, u(1) = G

First we split up the interval 0 < r0 ≤ r ≤ 1 into N

pieces, so rk = r0 + kh, k = 0, 1, 2, . . . N and h =
1 − r0
N

The discrete version of the ODE using standard differ-
ences will be

rk
uk+1 − uk

h
= S, uN = G

which can be rearranged to produce

uk = uk+1 − Sh

rk
, k = 0, 1, 2, . . . N − 1

We can find every value of uk on the grid by starting at
k = N since uN = G.

Then uN−1 can be computed in terms of uN , and uN−2

can be computed in terms of uN−1 and so on.

This process is called a marching scheme.
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Applying Nonstandard Finite Differences
Consider again the ODE

r
du

dr
= S, u(1) = G

“Buckmire’s Method”
By manipulating the differential equation and approxi-
mating the derivatives

r
du

dr
=
du
dr
r

=
du

d(log(r))
≈ ∆u

∆(log(r))

∆u is defined as uk+1 − uk and
∆ log(r) is log(rk+1) − log(rk).

The discrete version of the ODE using Mickens differences
will be

uk+1 − uk
log(rk+1) − log(rk)

= S for k = 0, 1, . . . N−1, with uN = G

which can be rearranged to be

uk = uk+1 − S[log(rk+1) − log(rk)]

= uk+1 − S log (rk+1/rk)

This is also a marching scheme for determining all values
of uk from k = N − 1, N − 2, . . . , 1, 0 with uN = G
How do the two competing numerical methods compare?
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Numerical Results for m = 0 case
Let S = G = 1 and choose r0 = 10−4 and N = 100.
Then h = 1−10−4

100
We know the exact solution will be u(r) = S log r +G
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The m > 0 problem
Recall the boundary value problem is

1

r

d

dr


r
du

dr


 −m2u = 0, m constant

r
du

dr

∣∣∣∣∣∣∣r=0
= S,

u(1) = G.

We can simplify the derivative terms to obtain

d2u

dr2
+

1

r

du

dr
−m2u = 0

which becomes

r2d
2u

dr2
+ r

du

dr
−m2r2u = 0

If we let z = mr then this equation can be transformed
into

z2d
2u

dz2
+ z

du

dz
− z2u = 0

This is known as the modified Bessel’s Equation of zeroth
order.
It’s such a well-known equation that its solutions u(z) are
functions called the modified Bessel’s functions of
the first and second kind K0(z) and I0(z)
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There are numerous functions whose name we know who
are really just solutions of a differential equation. For
example, the equation

d2u

dz2
+ u = 0

has two famous solutions: and

When m > 0 the exact solution to our boundary value
problem can be written in terms of I0(mr) and K0(mr)

u(r) = −SK0(rm) + (G + SK0(m))
I0(rm)

I0(m)

Since we have an exact solution we can compare it to nu-
merical results generated from using standard finite dif-
ference approximations to the modified Bessel’s equation
versus using a nonstandard (Buckmire) finite difference
approximation
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Comparing Results for m > 0
Let S = G = 1 and choose N = 100 and r0 = 10−4 or
10−8. Then h = 1−r0
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The Problem We Really Want To Solve
(Theoretical Aerodynamics /
Computational Fluid Dynamics)

The Kármán-Guderley equation

(K − (γ + 1)φx)φxx + φr̃r̃ +
1

r̃
φr̃ = 0. (1)

Inner boundary condition

φ(x, r̃) → S(x) log r̃ +G(x), as r̃ → 0, |x| ≤ 1
φ(x, r̃) bounded, for r̃ = 0, |x| > 1.

(2)
Outer boundary condition

φ(x, r̃) → D
4π

x

(x2 +Kr̃2)3/2
, as (x2+r̃2)1/2 → ∞.

(3)
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Future Work: Problems We Haven’t
Solved (Yet!)

The Bratu Problem

∆u + λeu = 0, u = 0 on ∂U

In one-dimension the problem becomes simpler

d2

dx2
u(x) + λeu(x) = 0, u(0) = u(1) = 0

and there is an exact solution

u(x) = −2 ln



cosh[(x− 1

2)
θ
2]

cosh(θ4)




which satisfies the boundary conditions

u(0) =

and
u(1) =

and satisfies the differential equation if

θ =
√

2λ cosh


θ

4



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Bratu-Gel’fand Problem

1

r

d

dr


r
du

dr


 + λeu(r) = 0, u(1) = 0 and u(0) <∞

Joint Work with Mickens

∂T

∂t
=

1

10

∂2(T 5/2)

∂r2
+

1

10r

∂2(T 5/2)

∂r2
+ (1 − T 2)(cT 2 − T 1/2)

T (1, t) = 0

T (r, 0) = A(r +
1

8
)(r − 1)2
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