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terms motivated our investigation of a heat equation having a square root

nonlinear reaction term. The original equation occurs in the study of plasma

behavior in fusion physics. We begin by examining the numerical behavior
of the ordinary differential equation obtained by dropping the diffusion term.

The results from this simpler case are then used to construct nonstandard

finite difference schemes for the partial differential equation. A variety of
numerical results are obtained and analyzed, along with a comparison to the

numerics of both standard and several nonstandard schemes.
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I. Introduction
Wilhelmsson et al [1] consider a highly nonlinear parabolic partial

differential equation to model the plasma physics of a burning fuel

for the generation of energy by means of nuclear fusion:

∂T

∂t
=

1

10

∂2(T 5/2)

∂r2
+

1

10r

∂(T 5/2)

∂r
+ (1− r2)(aT 2 − bT 1/2)

(1)

where a and b are positive parameters, and the boundary conditions

are

T (1, t) = 0, T (0, t) < ∞. (2)

The variable T is the absolute temperature and therefore satsifies

the positivity condition T (r, t) ≥ 0 for 0 ≤ r ≤ 1 and t ≥ 0. The

initial condition can take many forms; a realistic analytic possibility

is

T (r, 0) = A(r + B)(r − 1)2 (3)
where A > 0 and 0 < B < 1.

It should be noted that Equation (1) has both nonlinear diffusion

and reaction terms. Further, the T 1/2 term, in the reaction function,

appears with a negative coefficient and, as a consequence, gives rise

to dissipation
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II. The Simplified ODE
In order to better understand the dynamics of Equation (1), we first

study of some related, simplified differential equations having only

the square root term. The first “toy equation” to be examined is the

first-order, nonlinear ordinary differential equation

dT

dt
= −λT 1/2, T (t0) = T0, (4)

where λ > 0 and T0 > 0.

A. Exact Solution

The exact solution to Equation (4) is

T (t) =





1

4

[
2T

1/2
0 − λ(t − t0)

]2
, 0 ≤ t0 ≤ t < t∗

0, t ≥ t∗.
(5)

where

t∗ =
2T

1/2
0

λ
. (6)

Of course T (t) = 0 is also a singular solution of Equation (4).
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B. Discretizations

An exact finite difference scheme for the simplified ODE in Equa-

tion (4) can be constructed from the general solution given in Equa-

tion (5) by discretizing the exact solution and applying the following

transformations:

t → tk+1

t0 → tk
T0 → Tk

T (t) → Tk+1
where tk = hk, h = ∆t, and Tk = T (tk), to produce

Tk+1 =
1

4

[
2T

1/2
k − λ(tk+1 − tk)

]2

The resulting exact standard finite difference scheme is

Tk+1 − Tk

h
= −λT

1/2
k +

λ2h

4
. (7)

Observe that in the above expression an extra term appears on the

right-side compared to the standard forward-Euler approximation of

(4) which is

Tk+1 − Tk

h
= −λT

1/2
k . (8)
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B.1 First NSFD Scheme
A first nonstandard finite difference scheme [4, 5, 7] can be

derived by manipulating the right-side of (4), i.e. writing it as

dT

dt
= −λT 1/2 = −λ

T

T 1/2
(9)

and then discretizing this expression to give

Tk+1 − Tk

h
= −λ


Tk+1

T
1/2
k


 . (10)

Solving for Tk+1 gives

Tk+1 =


 T

1/2
k

λh + T
1/2
k


Tk. (11)

This first nonstandard finite difference scheme is denoted NSFD(1)

in the numerical experiments
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B.2 Second NSFD Scheme
A second NSFD scheme can be constructed by use of the following

discretization

T 1/2 →
(

2Tk+1

Tk+1 + Tk

)
T

1/2
k , (12)

which gives

Tk+1 − Tk

h
= −λT

1/2
k

(
2Tk+1

Tk+1 + Tk

)
. (13)

This equation is quadratic in Tk+1. Solving for the non-negative

solution gives the expression

Tk+1 − Tk

h
= −λT

1/2
k +





√
T 2

k + (λh)2Tk − Tk

h





.

(14)
The nonstandard finite difference scheme in Equation (14) is denoted

NSFD(2) in the numerical experiments
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III. Numerical Experiments
We now have four FD schemes which can be used to obtain numer-

ical solutions to the IVP given in Equation (4). They are (i) the

exact scheme, Equation (7); (ii) the standard scheme, Equation (8);

(iii) NSFD(1), the nonstandard scheme of Equation (11); and (iv)

NSFD(2), the nonstandard scheme of Equation (14).

In the numerical experiments, the following parameter values were

selected: t0 = 0, T0 = 1, λ = 1, and h = W/N where N = 100

and W is the maximum value of the t variable; thus W = O(1) and,

in general, was chosen to be W = 4 for our numerical simulations.

Note that for these choice of parameter values, t∗ = 2.

Inspection of Figure 1 and Figure 2 allows the following conclusions

to be made:

(i) All four FD schemes give good numerical representations of the

actual solution to Equation (4).

(ii) The largest numerical errors occur in the NSFD(1).

(iii) The error in the NSFD(2) and standard FD schemes are essen-

tially the same except for t values near t∗ = 2.

(iv) All schemes give a numerically zero solution for t greater than

about t∗. Note that the standard scheme goes to zero (at least

computationally) at t = t∗, while NSFD(2) does so at a slightly

higher value than t∗, and NSFD(1), the worst of the three schemes,

achieves zero for its solution at a still larger value of t∗. Thus, in

terms of accuracy, the three schemes are ranked as follows: stan-

dard (most accurate), NSFD(2), and NSFD(1) (least accurate).
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Figure 1: Comparison of NSFD(1), NSFD(2), the standard scheme, and the exact scheme
for Equation (4).
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Figure 2: Plot of the differences between the NSFD(1), NSFD(2), the standard scheme, and
the exact FD scheme
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IV. The Simplified PDE

Our previous work with the “toy problem” provides hints for how to

discretize the Simplified PDE given by

∂T

∂t
= D

∂2T

∂x2
− λT 1/2; 0 ≤ x ≤ 1, t > 0

(15)
T (x, 0) = f(x) = given, T (0, t) = T (1, t) = 0.

(16)
A standard finite difference scheme for Equation (15) is given by the

expression

T k+1
m − T k

m

∆t
= D

[
T k

m+1 − 2T k
m + T k

m−1)

(∆x)2

]
− λ(T̃ k

m)1/2

(17)
where T̃ k

m can take a variety of forms such as

(T̃ k
m)1/2 = (T k

m)1/2, (18a)

(T̃ k
m)1/2 =

√
T k

m+1 + T k
m + T k

m−1

3
, (18b)

(T̃ k
m)1/2 =

√
T k

m+1 +
√

T k
m +

√
T k

m−1

3
. (18c)

In the above discretizations, we use the notation t → tk = k(∆t), x → xm =

m(∆x), and T (x, t) → T k
m. Thus, k and m are, respectively, the discrete time

and space variables, and T k
m is an approximation to T (xm, tk).
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Solving Equation (17) for T k+1
m gives

T k+1
m = DR(T k

m+1+T k
m−1)+(1−2DR)T k

m−(λ∆t)(T̃ k
m)1/2

(19)

where R =
∆t

(∆x)2
. If T k

m ≥ 0(k-fixed, all relevant m) then T k+1
m is

not necessarily non-negative.

T k+1
m − T k

m

∆t
= D

[
T k

m+1 − 2T k
m + T k

m−1

(∆x)2

]
− λ

[
T k+1

m

(T̃ k
m)1/2

]

(20)
where (T̃ k

m) takes one of the forms given in Equation (18) or any

such equivalent expression. Examination of this last equation shows

that it is linear in T k+1
m ; therefore solving for it gives

T k+1
m = [DR(T k

m+1+T k
m−1)+(1−2DR)T k

m]

[
(T̃ k

m)1/2

(λ∆t) + (T̃ k
m)1/2

]
.

(21)

Inspection of Equation (21) shows that positivity of the evolved solutions is

certain if the following condition holds:

1 − 2DR ≥ 0. (22)

As in previous work [5, 7], we let

1 − 2DR = γDR, γ ≥ 0, (23)

where γ is a non-negative number. This gives us, first, a relationship between
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the time and space step-sizes, i.e.

∆t =
(∆x)2

(2 + γ)D
, (24)

and allows the following representation for this NSFD scheme:

T k+1
m = DR[T k

m+1 + γT k
m + T k

m−1]

[
(T̃ k

m)1/2

(λ∆t) + (T̃ k
m)1/2

]
.

(25)
V. Numerical Results
To use this scheme, the following steps should be carried out:

(i) Select values for D, λ and ∆x.

(ii) Determine ∆t from Equation (24).

(iii) Select a set of boundary values and initial conditions.

(iv) Use the NSFD scheme of Equation (25) to calculate the numerical solu-

tions of Equation (15).

We have carried out simulations using FD schemes. They are indicated by

the following notations:

(a) Standard: Equation (17) with T̃ k
m = T k

m.

(b) NSFD(1): Equation (25) with T̃ k
m given by Equation (18a).

(c) NSFD(2): Equation (25) with T̃ k
m given by Equation (18b).

(d) NSFD(3): Equation (25) with T̃ k
m given by Equation (18c).

The initial condition was selected to be

T (x, 0) = sin(πx), 0 ≤ x ≤ 1, (26)

with the boundary conditions

T (0, t) = T (1, t) = 0, t > 0. (27)
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VI. Discussion and Conclusion
Our primary goal in studying the discretizations given in Sections 1 and 2 was

to gain insight that could aid us in the formulation of improved FD schemes
for more complex differential equations such as Equation (1). The major

difficulty is how to construct discrete models that also satiisfy a condition of

positivity as required by the physical principles operating as constraints on

the structure of the mathematical (usually differential) equations. This issue
is important and its importance derives from the fact that many numerical

instabilities arise from violation of some physical principle by the FD equa-

tions [5, 6, 7]. In this paper, we have demonstrated one possible mechanism

for dealing effectively with terms of the form Tα where 0 < α < 1. The case
when α < 1 presently offers no fundamental problems within the framework

of the current NSFD scheme methodology [5, 6, 7]. The work presented in

Sections 2 and 3 illustrate one possibility for this resolution. Clearly, alter-
native methods may also exist to eliminate these issues.

The major conclusions from the calculations and constructions we have given

here are:

(i) positivity can be satisfied in FD schemes where fractional power terms

appear;

(ii) the study of rather elementary or “toy model” differential equations can

provide insight into what should be done for more comples ODEs and
PDEs;

(iii) currently, no principle exists to restrict possible discretizations for terms

such as Tα, 0 < α < 1.
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