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Class 9: Tuesday March 24

TITLE How Regular Perturbations on ODEs Can Go Wrong

CURRENT READING Logan, Sections 2.1.2 and 2.1.3

SUMMARY
This week we continue looking at regular perturbations in differential equations and stumble
upon what can go wrong. We’ll be introduced to a method to still produce reasonable
perturbation solutions called the Poincaré-Lindstedt method.

RECALL
Given the IVP which models an object falling through a medium with air resistance propor-
tional to current velocity squared

m
dv

dτ
= −av + bv2, v(0) = V0 (1)

We can non-dimensionalize the model using the scalings

y =
v

V0
, t =

τ

m/a
(2)

to produce
dy

dt
= −y + εy2, y(0) = 1 where ε =

bV0

a
� 1 (3)

Similarly, given the following model for a nonlinear spring-mass oscillator

m
d2y

dτ 2
= −ky − ay3, y(0) = A,

dy

dτ
(0) = 0 (4)

we can non-dimensionalize it using the scalings

u =
y

A
, t =

τ√
m/k

(5)

to produce

d2u

dt2
= −u− εu3, u(0) = 1, u′(0) = 0 where ε =

aA2

k
� 1 (6)

The IVP in (6) is known as Duffing’s Equation and has no known exact solution.

If we assume a perturbation series solution of the form

u(t) = u0(t) + εu1(t) + ε2u2(t) + . . . (7)

then we will produce a series of differential equations (with initial conditions) of various
orders in epsilon...
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EXAMPLE
Let’s show what the systems we get are:

The O(1) equation is
d2u0

dt2
+ u0 = 0, u0(0) = 1, u′

0(0) = 0 (8)

The O(ε) equation is

d2u1

dt2
+ u1 = −u3

0, u1(0) = 0, u′
1(0) = 0 (9)

The solution to the leading order IVP, the O(1) term in (7) is

u0(t) = cos(t) (10)

which means that the O(ε) equation becomes

d2u1

dt2
+ u1 = − cos3(t), u1(0) = 0, u′

1(0) = 0

But using the common trigonometric identity cos(3t) = 4 cos3(t) − 3 cos(t) the first-order
equation (9) becomes

d2u1

dt2
+ u1 = −3

4
cos(t)− 1

4
cos(3t), u1(0) = 0, u′

1(0) = 0 (11)

which can be solved using the Method of Undetermined Coefficients (assume a solution of
the form A cos(t) + B sin(t) + C cos(3t) + Dt cos(t) + Et sin(t) which produces the following
solution (after applying the initial conditions)

u1(t) =
1

32
cos(3t) − 1

32
cos(t) − 3

8
t sin(t) (12)

EXAMPLE
We can confirm this above result.
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Exercise
Confirm that the given functions in (10) and (12) are indeed the solution to the IVPs in (8)
and (9), respectively.

Consider a graph of u0(t) and u0(t)+ εu1(t) plotted versus time for a typical value of ε = 0.1

on the interval 0 ≤ t ≤ 1

ε2
. What do you notice?
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Therefore εu1(t) is NOT much less than u0(t) for all time. Can you explain what happens
as t gets larger and larger? Is it possible to estimate the value of t where “trouble” begins?

Explain the significance of the Figure
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The Poincaré-Lindstedt Method
In this technique the perturbation series is chosen to be

u(τ ) = u0(τ ) + εu1(τ ) + ε2u2(τ ) + . . . (13)

where τ = ωt and

ω = ω0 + εω1 + ε2ω2 + . . . (14)

We can choose ω0 = 1 since it is the frequency of the solution given in (10) to the leading-
order problem in Equation (9).

Using the new scalings given in (13) and (14) we can transform (6) into

ω2d2u

dτ 2
= −u− εu3, u(0) = 1 u′(0) = 0 (15)

EXAMPLE
First let’s show how we get from (6) to (15)

and then we can show that the equations we get are:

The O(1) equations are

d2u0

dτ 2
+ u0 = 0, u0(0) = 1, u′

0(0) = 0 (16)

The O(ε) equations are

d2u1

dτ 2
+ u1 = −2ω1u

′′
0 − u3

0, u1(0) = 0, u′
1(0) = 0 (17)

4



Applied Mathematics Week 9 Math 395 Spring 2009

The solution to (16), d2u0

dτ2 + u0 = 0, u0(0) = 1, u′
0(0) = 0, is similar to the solution from

(8) which turns out to be
u0(τ ) = cos(τ ) (18)

which leads to the O(ε) equation in (17) becoming

d2u1

dτ 2
+ u1 =

(
2ω1 −

3

4

)
cos(τ ) − 1

4
cos(3τ ), u1(0) = u′

1(0) = 0 (19)

NOTE that Equation (19) is solved using the same techniques for Equation (11), with the
extra term 2ω1 cos(τ ) coming from −2ω1u

′′
0.

In order to eliminate the cos(τ ) term on the right-hand side of (19) we can let ω1 =
3

8
which

produces

d2u1

dτ 2
+ u1 = −1

4
cos(3τ )

We can again use the Method of Undetermined Coefficients and the initial conditions to
show that the solution to the above equation is

u1(τ ) =
1

32
[cos(3τ ) − cos(τ )] where τ = t +

3

8
εt + . . . (20)

A first-order, uniformly-valid perturbation solution of Duffing’s Equation (6) is u0(τ )+εu1(τ ),

u(τ ) = cos(τ ) +
1

32
ε[cos(3τ ) − cos(τ )] where τ = t +

3

8
εt + . . . (21)
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A graph of (21) versus time for a typical value of ε = 0.1 on the interval 0 ≤ t ≤ 1

ε2
is shown

below. NOW what do you notice?
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Here’s a graph of the difference between u(τ ) and u0(τ ) which equals εu1(τ ) on the same

interval 0 ≤ t ≤ 1

ε2
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EXPLAIN the significance of the above Figures

Homework Questions for Math 395: Applied Mathematics due TUE APR 7
For each of the problems, use a Poincaré-Lindstedt method to obtain a 2-term perturbation
approximation to the following problems. Also produce a graph (on the same axes) of y0(t)

and/or y0(t) + εy1(t) on the interval 0 ≤ t ≤ 1

ε2
for a reasonably small value of ε which

indicates that your solution is uniformly valid for all t values.

GROUP 1: Logan, page 101, Question 8(a)
(a) y′′ + y = εyy′2, y(0) = 1, y′(0) = 0

GROUP 2: Logan, page 101, Question 8(b)
(b) y′′ + 9y = 3εy3, y(0) = 0, y′(0) = 1

GROUP 3: Logan, page 101, Question 8(c)
(b) y′′ + y = ε(1 − y′2), y(0) = 1, y′(0) = 0
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