## Applied Mathematics

Math 395 Spring 2009
(C) 2009 Ron Buckmire

Fowler 301 Tue 3:00pm - 4:25pm http://faculty.oxy.edu/ron/math/395/

Class 2: Tuesday January 27
TITLE Dimenionsl Analysis, Continued
CURRENT READING Logan, Section 1.1.1

## SUMMARY

This week we will do some more complicated dimensional analysis and look at the Buckingham Pi Theorem more formally.

## RECALL

The informal statement of the Pi Theorem: "Given a physical law that gives a relation among a certain number of dimensioned quantities, then there is an equivalent law that can be expressed as a relation among certain dimensionless quantities" (Logan 5).

## The Buckingham Pi Theorem

On page 10 of Logan the Pi Theorem is formally presented:

Let

$$
\begin{equation*}
f\left(q_{1}, q_{2}, q_{3}, \ldots, q_{m}\right)=0 \tag{1}
\end{equation*}
$$

be a unit-free physical law that relates the dimensional quantities $q_{1}, q_{2}, \ldots, q_{m}$. Let $L_{1}, L_{2}, \ldots, L_{n}$ (with $n<m$ ) be fundamental dimensions with

$$
\left[q_{i}\right]=L_{1}^{a_{1 i}} L_{2}^{a_{2 i}} \ldots L_{n}^{a_{n i}}, \text { where } i=1, \ldots, m
$$

and let $r=\operatorname{rank}(A)$, where $A$ is an $n \times m$ dimension matrix with entries $a_{i j}$. THEN there exists $m-r$ independent dimensionless quantities $\pi_{1}, \pi_{2}, \pi_{3}, \ldots, \pi_{m-r}$ that can be formed from $q_{1}, q_{2}, q_{3}, \ldots q_{m}$ and the physical law (1) is equivalent to another equation

$$
\begin{equation*}
F\left(\pi_{1}, \pi_{2}, \pi_{3}, \ldots, \pi_{m-r}\right)=0 \tag{2}
\end{equation*}
$$

expressed only in terms of dimensionless variables.

What does this all mean? Let's look at the theroem closely:
There are really two parts to it
(i) Among the quantities $q_{1}, q_{2}, \ldots, q_{m}$ there are $m-r$ independent dimensionless variables that can be formed, where $r$ is the rank of the dimension matrix $A$
(ii) If $\pi_{1}, \pi_{2}, \ldots, \pi_{m-r}$ are the $m-r$ dimensionless variables, then $f\left(q_{1}, q_{2}, q_{3}, \ldots, q_{m}\right)=0$ (1) is equivalent to a physical law of the form $F\left(\pi_{1}, \pi_{2}, \pi_{3}, \ldots, \pi_{m-r}\right)=0$ (2).

Let's look at the proof given on Page 13 of Logan and then explore Example 1.6.
Proving Statement (i) is straightforward. Once you set

$$
\begin{equation*}
\pi=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} q_{2}^{\alpha_{3}} \ldots q_{m}^{\alpha_{m}} \tag{3}
\end{equation*}
$$

We can obtain a homogeneous set of $n$ linear equations in $m$ variables $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$. We are looking for the set of solutions that span the nullspace of an $n \times m$ matrix with rank $r$, which is $m-r$. (Note that Logan describes his matrices using $n$ times $m$ instead of the customary $m$ rows and $n$ columns some of you may be used to from Linear Algebra).
Proving Statement (ii) involves looking at Example 1.6 which is about the law $f(x, t, g)=$ $x-\frac{1}{2} g t^{2}=0$ and showing that one can produce a new law $F\left(\pi_{1}\right)=0$ which is nondimensionless and equivalent. Let's do that.

## Exercise

Example 1.5 on page 11. Consider a physical law of the form $f(t, r, u, e, k, c)=0$ where $t$ is time, $e$ is energy, $r$ is radial distance from the heat source, $c$ is the heat capacity and $k$ is thermal difusivity. Using standard dimensions of $T, L, \Theta$ and $E$ and this specific order of varaiables, show that the dimension matrix looks like

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 2 & -3 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

and dimensional analysis to show that

$$
\frac{e}{c}(k t)^{-3 / 2} g\left(\frac{r}{\sqrt{k t}}\right)=u
$$

is a version of a physical law relating the quantities.

