Applied Mathematics

Math 395 Spring 2009 © 2009 Ron Buckmire

Fowler 301 Tue 3:00pm - 4:25pm http://faculty.oxy.edu/ron/math/395/

Class 2: Tuesday January 27

TITLE Dimenional Analysis, Continued CURRENT READING Logan, Section 1.1.1

SUMMARY

This week we will do some more complicated dimensional analysis and look at the Buckingham Pi Theorem more formally.

RECALL

The informal statement of the Pi Theorem: "Given a physical law that gives a relation among a certain number of *dimensioned* quantities, then there is an equivalent law that can be expressed as a relation among certain **dimensionless** quantities" (Logan 5).

The Buckingham Pi Theorem

On page 10 of Logan the Pi Theorem is formally presented:

Let

$$f(q_1, q_2, q_3, \dots, q_m) = 0 (1)$$

be a unit-free physical law that relates the dimensional quantities q_1, q_2, \ldots, q_m . Let L_1, L_2, \ldots, L_n (with n < m) be fundamental dimensions with

$$[q_i] = L_1^{a_{1i}} L_2^{a_{2i}} \dots L_n^{a_{ni}}, \text{ where } i = 1, \dots, m$$

and let $r = \operatorname{rank}(A)$, where A is an $n \times m$ dimension matrix with entries a_{ij} . THEN there exists m-r independent dimensionless quantities $\pi_1, \pi_2, \pi_3, \ldots, \pi_{m-r}$ that can be formed from $q_1, q_2, q_3, \ldots, q_m$ and the physical law (1) is equivalent to another equation

$$F(\pi_1, \pi_2, \pi_3, \dots, \pi_{m-r}) = 0$$
(2)

expressed only in terms of dimensionless variables.

What does this all mean? Let's look at the theroem closely:

There are really two parts to it

- (i) Among the quantities q_1, q_2, \ldots, q_m there are m-r independent dimensionless variables that can be formed, where r is the rank of the dimension matrix A
- (ii) If $\pi_1, \pi_2, \ldots, \pi_{m-r}$ are the m-r dimensionless variables, then $f(q_1, q_2, q_3, \ldots, q_m) = 0$ (1) is equivalent to a physical law of the form $F(\pi_1, \pi_2, \pi_3, \ldots, \pi_{m-r}) = 0$ (2).

Let's look at the proof given on Page 13 of Logan and then explore Example 1.6.

Proving Statement (i) is straightforward. Once you set

$$\pi = q_1^{\alpha_1} q_2^{\alpha_2} q_2^{\alpha_3} \dots q_m^{\alpha_m} \tag{3}$$

We can obtain a homogeneous set of n linear equations in m variables $\alpha_1, \alpha_2, \ldots, \alpha_m$. We are looking for the set of solutions that span the nullspace of an $n \times m$ matrix with rank r, which is m - r. (Note that Logan describes his matrices using n times m instead of the customary m rows and n columns some of you may be used to from Linear Algebra).

Proving Statement (ii) involves looking at Example 1.6 which is about the law $f(x,t,g) = x - \frac{1}{2}gt^2 = 0$ and showing that one can produce a new law $F(\pi_1) = 0$ which is non-dimensionless and equivalent. Let's do that.

Exercise

Example 1.5 on page 11. Consider a physical law of the form f(t, r, u, e, k, c) = 0 where t is time, e is energy, r is radial distance from the heat source, c is the heat capacity and k is thermal diffusivity. Using standard dimensions of T, L, Θ and E and this specific order of variables, show that the dimension matrix looks like

and dimensional analysis to show that

$$\frac{e}{c}(kt)^{-3/2}g\left(\frac{r}{\sqrt{kt}}\right) = u$$

is a version of a physical law relating the quantities.