Applied Mathematics

Math 395 Spring 2009
(C)2009 Ron Buckmire

Fowler 301 Tue 3:00pm - 4:25pm
http://faculty.oxy.edu/ron/math/395/09/

Class 10: Tuesday April 14

TITLE Itroduction To Boundary Layers
CURRENT READING Logan, Sections 2.2.2 and 2.2.3

SUMMARY

This week we will be introduced to the concept of boundary layers, i.e. a solution to a boundary value problem which is only valid during certain regions of the independent variable.

CONSIDER

Given the boundary value problem

$$
\begin{equation*}
\epsilon \frac{d^{2} y}{d x^{2}}+(1+\epsilon) \frac{d y}{d x}+y=0, \text { where } \epsilon \ll 1 \text { and } \quad 0<x<1 \text { with } y(0)=0, \quad y(1)=1 . \tag{1}
\end{equation*}
$$

We'll asssume the usual regular perturbation solution of the form

$$
\begin{equation*}
y(x)=y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}(x)+\ldots \tag{2}
\end{equation*}
$$

then we will produce a series of differential equations (with BOUNDARY conditions) of various orders in epsilon which look like...
The $\mathcal{O}(1)$ equation is

$$
\begin{equation*}
\frac{d y_{0}}{d x}+y_{0}=0, \quad y_{0}(0)=0, \quad y_{0}(1)=1 \tag{3}
\end{equation*}
$$

The $\mathcal{O}(\epsilon)$ equation is

$$
\begin{equation*}
\frac{d y_{1}}{d x}+y_{1}=-y_{0}^{\prime \prime}-y_{0}^{\prime}, \quad y_{1}(0)=0, \quad y_{1}(1)=0 \tag{4}
\end{equation*}
$$

EXAMPLE

Let's solve these boundary value problems and see what happens. $y_{0}(x)=A e^{-x}$ is the homogeneous solution of (3). What happens when you solve for A ?

So, this means that this form will not work and we're looking at a singular perturbation problem and have to figure out something else.

Let's look again at the exact problem given in Equation (1)

$$
\begin{equation*}
\epsilon y^{\prime \prime}+(1+\epsilon) y^{\prime}+y=0 \tag{5}
\end{equation*}
$$

Notice that it has the form $a y^{\prime \prime}+b y^{\prime}+c y=0$ where a, b and c are constant coefficients which depend ϵ. Assuming the ansatz of $y=e^{r x}$ you should be able show that the r satisfies the following equation

$$
\begin{equation*}
r=\frac{-(1+\epsilon) \pm(1-\epsilon)}{2 \epsilon} \tag{6}
\end{equation*}
$$

Exercise

Confirm that the exact solution to (5) by obtaining the values of r.

This means that the general exact solution to (5) is $y(x)=A e^{-x}+B e^{-x / \epsilon}$ which when evaluated using the boundary conditions produces the exact solution to (1)

$$
\begin{equation*}
y(x)=\frac{1}{e^{-1}-e^{-1 / \epsilon}}\left(e^{-x}-e^{-x / \epsilon}\right. \tag{7}
\end{equation*}
$$

Boundary Layer

Near one of the ends of interval of interest $0 \leq x \leq 1$ the exact solution $y(x)$ given in Equation (7) changes very rapidly, in a very thin which happens to be of size ϵ. This are of rapid change is called a boundary layer. Many real-world physical problems like fluid flow possess solutions which exhibit boundary layers.
We obtain the solution of the problem with a boundary layer by splitting the problem into two: an inner approximate solution $y_{\text {inner }}(x)$ and an outer approximate solution $y_{\text {outer }}(x)$. Each piece of the problem has a region of validity.

The Outer Problem

The outer solution is easier to find because it is valid when ϵ is ignored, i.e. in the range where $\mathcal{O}(\epsilon)<x \leq 1$, so you can let $\epsilon=0$ in the original problem given in (1)

$$
\begin{equation*}
y_{\text {outer }}^{\prime}+y_{\text {outer }}=0, \quad y_{\text {outer }}(1)=1 \tag{8}
\end{equation*}
$$

Notice the inner boundary condition near $x=0$ is ignored.
Solving the IVP in (8) gives us the solution $y_{\text {outer }}(x)=e^{1-x}$.

Exercise

You should check that the outer solution $y_{\text {outer }}(x)=e^{1-x}$ satisfies the IVP given in Equation (8)

The Inner Problem

The inner solution is valid when $0 \leq x<\mathcal{O}(\epsilon)$ which means its solves the problem

$$
\begin{equation*}
\epsilon y_{\text {inner }}^{\prime \prime}+(1+\epsilon) y_{\text {inner }}^{\prime}+y_{\text {inner }}=0, \quad y_{\text {inner }}(0)=0 \tag{9}
\end{equation*}
$$

However, we don't know how to solve this problem exactly since it is a second-order differential equation with only one condition on $y(x)$. We'll explore this further later.
We do, however know that the inner solution will have the form $y(x)=A\left(e^{-x}-e^{-x / \epsilon}\right)$ from when we used our ansatz and found the values of r.
It turns out that $A=e^{1}$ so that the inner solution has the form $y(x)=e^{1-x}-e^{1-x / \epsilon}$. This function solves the ODE and the inner boundary condition.
However, since this function is only valid for small values of $x \ll 1$ this implies that $e^{1-x} \approx e$ so it can really be approximated by $y_{\text {inner }}(x)=e-e^{1-x / \epsilon}$

Exercise

You should check that the function $y_{\text {inner }}(x)=e-e^{1-x / \epsilon}$ satisfies the IVP given in Equation (9)

