Numerical Analysis

Math 370 Fall 1998
MWF 11:30am - 12:25pm
(c) 1998 Ron Buckmire

Class 2: Wednesday September 2

SUMMARY Floating Point Numbers and Round-Off Error

CURRENT READING Burden \& Faires Section 1.2

Round-Off Error

Recall that a typical single-precision floating-point number $f l(x)$ is represented in a computer by a 32 -bit "word":

s	$\mathrm{c}(7$-bits)	q (24-bits)
0	1000010	101100110000010000000000

In this case,

$$
f l(x)=(-1)^{s} \times q \times 16^{c-64}
$$

where the signum, characteristic and mantissa are below.

$$
\begin{aligned}
& s=0 \\
& c=1000010_{2} \\
& q=0.10110011000001000000000_{2}
\end{aligned}
$$

We know that $1000010_{2}=66_{10}$ and that $0.10110011000001000000000_{2}=0.6992797852_{10}$ Use the formula for $f l(x)$ to write down the decimal number x this represented by this bit of computer data:

Now write down the data representation for the machine number which is NEXT SMALLEST to $f l(x)$

$$
f l(x)_{\text {prev }}=\begin{array}{|l|l|l|}
\hline & & \\
\hline
\end{array}
$$

Now write down the data representation for the machine number which is NEXT LARGEST to $f l(x)$

$$
f l(x)_{n e x t}=\begin{array}{|l|l|}
\hline & \\
\hline
\end{array}
$$

Now, if we had lots of time, and a computer which kept a lot of significant digits, we could compute that $f l(x)_{\text {prev }}=179.0156097412109375$ and $f l(x)_{\text {next }}=179.0156402587890625$

Questions

What does this tell you about how this computer will represent any number between 179.0156097412109375 and 179.0156402587890625 ?

What can you conclude about the different between the "real number line" and the "machine number line"? In what ways are they different?

Floating Point Numbers

We can represent the machine numbers stored using the previous data representation as having the form

$$
\pm 0 . d_{1} d_{2} d_{3} \cdots d_{k} \times 10^{n}, \quad 1 \leq d_{1} \leq 9,0 \leq d_{i} \leq 9
$$

In our specific case $k=6$ and $-78 \leq n \leq 76$
Any positive real number y can be normalized to be written in the form

$$
y=0 . d_{1} d_{2} d_{3} \cdots d_{k} d_{k+1} \cdots \times 10^{n}
$$

Grouphork

Write down the following numbers in scientific notation using the form y is written in.

$$
\begin{array}{cl}
0.000747= & 314.159265= \\
970000000= & -42.0=
\end{array}
$$

Will you be able to represent all these numbers perfectly accuately if you only get to keep 6 significant figures (i.e. $k=6$)?

How do computer manufacturers solve the problem of representing real numbers using a finite number of digits? Clearly an approximation to the number has to be made. The two choices are:

Chopping

In this case all the digits after d_{k} are ignored ("chopped off")

Rounding

In this case if the value of $d_{k+1} \geq 5$ then d_{k} is replaced by $d_{k}+1$

Exercise

Write down the decimal machine number representation for 3546.16527
(a) using chopping
(b) using rounding

Absolute Error and Relative Error

If \tilde{p} is an approximation to p, the absolute error is $|\tilde{p}-p|$, and the relative error is $\frac{|\tilde{p}-p|}{|p|}$, provided $p \neq 0$

Example

Let's compute the relative and absolute errors involved in chopping and rounding 3546.16527 using a 6 -digit decimal machine number representation.

