Numerical Analysis

Math 370 Spring 2009
(C) 2009 Ron Buckmire

MWF 11:30am - 12:25pm Fowler 110
http://faculty.oxy.edu/ron/math/370/09/

Worksheet 13

SUMMARY Formulas for Iterative Techniques of Solving Linear Systems
READING Recktenwald, Sec 8.5, pp. 427-445; Sec. 7.1.2 and Sec 7.2.4; Mathews \& Fink Section 3.6, 156-166

Consider the system

$$
\begin{aligned}
4 x-y+z & =7 \\
4 x-8 y+z & =-21 \\
-2 x+y+5 z & =15
\end{aligned}
$$

We can re-write these equations as

$$
x^{(k+1)}=\frac{7+y^{(k)}-z^{(k)}}{4}, \quad y^{(k+1)}=\frac{21+4 x^{(k)}+z^{(k)}}{8}, \quad z^{(k+1)}=\frac{15+2 x^{(k)}-y^{(k)}}{5}
$$

OR
$x^{(k+1)}=\frac{7+y^{(k)}-z^{(k)}}{4}, \quad y^{(k+1)}=\frac{21+4 x^{(k+1)}+z^{(k)}}{8}, \quad z^{(k+1)}=\frac{15+2 x^{(k+1)}-y^{(k+1)}}{5}$
Which of these schemes represents Gauss-Seidel Iteration and which represents Jacobi Iteration?

Can you generalize these iterative schemes if the linear system looks like:

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{aligned}
$$

Exercise

Write down the general iterative formula for Jacobi Iteration on a $3 x 3$ system here:

Write down the general iterative formula for Gauss-Seidel Iteration on a 3x3 system here

Matrix representation of iterative schemes for linear systems

We have written down the iterative scheme implementation of Jacobi and Gauss-Seidel iteration but the more useful way to think about these schemes is using the matrix representation of the generic iterative scheme

$$
\underline{x}^{(k+1)}=T \underline{x}^{(k)}+\underline{c}
$$

and we'll derive how T depends on A and \vec{c} depends on A and \vec{b} for each method. We will write the matrix A as the sum of three matrices D (diagonal matrix), L (lower triangular) and U (upper triangular) such that

$$
A=D-L-U
$$

EXAMPLE

Write down D, L and U for the original linear system on page 1

The system $A \underline{x}=\underline{b}$ can be written as

$$
\begin{aligned}
(D-L-U) \underline{x} & =\underline{b} \\
D \underline{x} & =L \underline{x}+U \underline{x}+\underline{b} \\
\underline{x} & =D^{-1}(L+U) \underline{x}+D^{-1} \underline{b} \\
\underline{x}^{(k+1)} & =D^{-1}(L+U) \underline{x}^{(k)}+D^{-1} \underline{b}
\end{aligned}
$$

Another choice is

$$
\begin{aligned}
(D-L-U) \underline{x} & =\underline{b} \\
(D-L) \underline{x} & =U \underline{x}+\underline{b} \\
\underline{x} & =(D-L)^{-1} U \underline{x}+(D-L)^{-1} \underline{b} \\
\underline{x}^{(k+1)} & =(D-L)^{-1} U \underline{x}^{(k)}+(D-L)^{-1} \underline{b}
\end{aligned}
$$

Which of the above schemes represents Jacobi Iteration and which represents Gauss-Seidel? How can you tell?

Rates of Convergence of iterative schemes for linear systems

We have written down the matrix implementation of Jacobi and Gauss-Seidel iteration in the form

$$
\vec{x}_{k+1}=T \vec{x}_{k}+\vec{c}
$$

and derived how T depends on A and \vec{c} depends on A and \vec{b} for each method.

Gauss-Seidel Iteration

$$
\vec{x}_{k+1}=(D-L)^{-1} U \overrightarrow{x_{k}}+(D-L)^{-1} \vec{b}
$$

Jacobi Iteration

$$
\vec{x}_{k+1}=D^{-1}(L+U) \overrightarrow{x_{k}}+D^{-1} \vec{b}
$$

Successive Over-Relaxation (SOR)

$$
\vec{x}_{k+1}=(D-\omega L)^{-1}[\omega U+(1-\omega) D] \overrightarrow{x_{k}}+(D-\omega L)^{-1} \vec{b}
$$

Gauss-Seidel ends up being a special case of successive over-relaxation with $\omega=1$.

Spectral Radius

The spectral radius $\rho(A)$ of a $N \times N$ matrix A is defined as $\rho(A)=\max |\lambda|$, where λ is an eigenvalue of A.

Properties of the Spectral Radius

(a) $\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}$
(b) $\rho(A) \leq\|A\|$, for any "natural matrix norm" (i.e. a norm which also applies to vectors)

The importance of the spectral radius of a matrix is that it allows us to say a lot about the convergence and rate of convergence of iterative schemes of the form $\vec{x}_{k+1}=T \vec{x}_{k}+\vec{c}$
bf THEOREM
The iterative scheme $\vec{x}_{k+1}=T \vec{x}_{k}+\vec{c}$ generates a sequence $\left\{\vec{x}_{n}\right\}$ which converges to the unique solution of $\vec{x}=T \vec{x}+\vec{c}$ for any initial guess \vec{x}_{0} if and only if $\rho(T)<1$.

COROLLARY

If $\|T\|<1$ for any natural matrix norm and c is a given vector then the iterative scheme $\vec{x}_{k+1}=T \vec{x}_{k}+\vec{c}$ converges to \vec{x} and the following error bound holds:

$$
\left\|\vec{x}-\vec{x}_{k}\right\| \leq\|T\|^{k}\left\|\vec{x}_{0}-\vec{x}\right\|
$$

A rule of thumb is that

$$
\left\|\vec{x}-\vec{x}_{k}\right\| \approx \rho(T)^{k}\left\|\vec{x}_{0}-\vec{x}\right\|
$$

Question

This means in general that iterative schemes converge at what kind of rate? linear, superlinear or quadratic?

Mo' Theorems

We can denote the matrices used by each particular iterative method below:
SOR iteration uses $T_{\omega}=(D-\omega L)^{-1}[\omega U+(1-\omega) D]$
Jacobi Iteration uses $T_{J}=D^{-1}(L+U)$
Gauss-Seidel uses $T_{G}=(D-L)^{-1} U$

Kahan Theorem

If $a_{i i} \neq 0$ for each $i=1,2, \ldots, n$ then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. Therefor SOR will only converge if $\left|\rho\left(T_{\omega}\right)\right|<1$, or in other words, when $0<\omega<2$.

Ostrowski-Reich Theorem

If A is a positive definite, tridiagonal matrix then $\rho\left(T_{G}\right)=\rho\left(T_{J}\right)^{2}<1$ and the optimal choice of ω is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{J}\right)\right]^{2}}}
$$

Positive Definite Matrix

A n by n matrix A is said to be positive definite if A is symmetric and if $x^{T} A x>0$ for every n-dimensional column vector $x \neq 0$. A matrix is positive definite if and only if all of its eigenvalues are positive.
GroupWork
Consider the system of equations

$$
\begin{aligned}
4 x+3 y & =24 \\
3 x+4 y-z & =30 \\
-y+4 z & =-24
\end{aligned}
$$

Let's try and solve this using Jacobi Iteration, Gauss-Seidel and optimal SOR. Use an initial guess of $(1,1,1)^{T}$. The exact solution is $(3,4,-5)^{T}$. Use Matlab as a tool to assist you. You will want to use sor.m in the linalg directory of the NMM toolbox (found in $\mathrm{S}: \backslash$ Math Courses \backslash Math370 ${ }^{\text {Spring2009). }}$

You will need to find the spectral radius of the system, and determine whether the matrix is positive definite.

