Numerical Analysis

Math 370 Spring 2009 ©2009 Ron Buckmire MWF 11:30am - 12:25pm Fowler 110 http://faculty.oxy.edu/ron/math/370/09/

Worksheet 6

SUMMARY Rates of Convergence of Iterative Sequences **CURRENT READING** Mathews, p. 75

Linear, Superlinear and Quadratic Convergence of Sequences

Definition: linear convergence

Suppose we have a convergent sequence $\{x_n\}$ which converges to x_{∞} . If there exists a constant 0 < C < 1 and an integer N such that

$$|x_{n+1} - x_{\infty}| \leq C|x_n - x_{\infty}|, \text{ for } n \geq N$$

we say $\{x_n\}$ converges **LINEARLY**.

In general we can say that if the following limit exists with positive constants α and λ ,

$$\lim_{n \to \infty} \frac{|x_{n+1} - x_{\infty}|}{|x_n - x_{\infty}|^{\alpha}} = \lambda$$

then, the sequence converges at a **rate of convergence of order** α , with asymptotic error constant λ . When $\alpha = 1$ this is called **linear convergence**. When $\alpha = 2$ this is called **quadratic convergence**. If $\alpha = 1$ and $\lambda = 0$ or the following limit exists,

$$\lim_{n \to \infty} \frac{|x_{n+1} - x_{\infty}|}{|x_n - x_{\infty}|} = 0$$

The sequence is said to converge **superlinearly**. Let's put all of this together in the following example. EXAMPLE Consider $p_n = n^{-2} = \frac{1}{n^2}$ and $q_n = \frac{1}{2^n} = 2^{-n}$.

1. What is the limit of each of the sequences?

2. For each of the sequences, find out how many steps it takes to be within 10^{-4} of its limit.

3. In terms of "big oh" and "little oh" notation, can you write down a relationship between q_n and p_n ?

4. Does p_n converge linearly? superlinearly? quadratically?

5. Does q_n converge linearly? superlinearly? quadratically?

6. Which sequence converges faster to its limit? Explain your answer. How is this related to their asymptotic rate of convergence?

GROUPWORK Example 1 Show that $r_n = \frac{1}{n^n}$ converges superlinearly to zero.

Example 2 Show that $s_n = \frac{1}{10^{2^n}}$ converges quadratically to zero.

NOTE: Algorithms which produce sequence of approximation which converge quadratically are extremely rare.