Numerical Analysis

Worksheet 6

SUMMARY Rates of Convergence of Iterative Sequences
CURRENT READING Mathews, p. 75

Linear, Superlinear and Quadratic Convergence of Sequences

Definition: linear convergence

Suppose we have a convergent sequence $\left\{x_{n}\right\}$ which converges to x_{∞}. If there exists a constant $0<C<1$ and an integer N such that

$$
\left|x_{n+1}-x_{\infty}\right| \leq C\left|x_{n}-x_{\infty}\right|, \text { for } n \geq N
$$

we say $\left\{x_{n}\right\}$ converges LINEARLY.
In general we can say that if the following limit exists with positive constants α and λ,

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x_{\infty}\right|}{\left|x_{n}-x_{\infty}\right|^{\alpha}}=\lambda
$$

then, the sequence converges at a rate of convergence of order α, with asymptotic error constant λ. When $\alpha=1$ this is called linear convergence. When $\alpha=2$ this is called quadratic convergence. If $\alpha=1$ and $\lambda=0$ or the following limit exists,

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x_{\infty}\right|}{\left|x_{n}-x_{\infty}\right|}=0
$$

The sequence is said to converge superlinearly.
Let's put all of this together in the following example.
EXAMPLE
Consider $p_{n}=n^{-2}=\frac{1}{n^{2}}$ and $q_{n}=\frac{1}{2^{n}}=2^{-n}$.

1. What is the limit of each of the sequences?
2. For each of the sequences, find out how many steps it takes to be within 10^{-4} of its limit.
3. In terms of "big oh" and "little oh" notation, can you write down a relationship between q_{n} and p_{n} ?
4. Does p_{n} converge linearly? superlinearly? quadratically?
5. Does q_{n} converge linearly? superlinearly? quadratically?
6. Which sequence converges faster to its limit? Explain your answer. How is this related to their asymptotic rate of convergence?

GroupWork
Example 1 Show that $r_{n}=\frac{1}{n^{n}}$ converges superlinearly to zero.

Example 2 Show that $s_{n}=\frac{1}{10^{2^{n}}}$ converges quadratically to zero.

NOTE: Algorithms which produce sequence of approximation which converge quadratically are extremely rare.

