Numerical Analysis

Math 370 Spring 2009 ©2009 Ron Buckmire MWF 11:30am - 12:25pm Fowler 110 http://faculty.oxy.edu/ron/math/370/09/

 $Class \ 2$

SUMMARY (Un)Avoidable Errors in Computing With Machines **CURRENT READING** Mathews & Fink, Sec 1.3

WARM-UP

Write down the meaning of the terms **overflow**, **underflow**, **mantissa**, **characteristic**, **hexadecimal**, **bit**, **decimal machine number**, **(numerical) precision** and compare your answers with at least one other person in the class (after you have written your own!)

RECALL

k-th digit Chopping In this case all the digits after d_k are ignored ("chopped off") *k*-th digit Rounding In this case if the value of $d_{k+1} \ge 5$ then d_k is replaced by $d_k + 1$ Absolute Error If \tilde{p} is an approximation to p, the absolute error is $|\tilde{p} - p|$ Relative Error Provided $p \ne 0$, the relative error is $\frac{|\tilde{p} - p|}{|p|}$

EXAMPLE

Show that the expression involving k which gives you an upper bound for the relative error involved in using chopping arithmetic is $\epsilon_{rel} = 10^{-k+1}$

It can also be shown that a bound for the relative error involved in using **rounding arith**metic is *half* that for chopping, $\epsilon_{rel} = 0.5 \times 10^{-k+1} = 5 \times 10^{-k}$.

Significant Digits

The number \tilde{p} is said to approximate p to k significant digits (or figures) if k is the largest non-negative integer for which the relative error is less than 5×10^{-k} . (Mathews p. 25)

Round-off Errors in the Quadratic Formula

Recall that the common formula for the roots of a quadratic equation $ax^2 + bx + c = 0$ is

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Round-off error can wreak havoc with the numerical implementation of this formula. Consider

$$x^2 + 62.10x + 1 = 0$$

which has the approximate roots $x_1 = -0.01610723$ and $x_2 = -62.08390$ Because of the size of the parameters in the quadratic equation, b^2 is much bigger than 4ac, so $\sqrt{b^2 - 4ac}$ is very close to b. a = 1, b = 62.10, c = 1

 $b^2 = 4ac = b^2 - 4ac = \sqrt{b^2 - 4ac} =$

GROUPWORK

Using 4-digit rounding (or chopping) arithmetic compute the first root x_1

What's the relative error in this calculation?

Solution: change the formula for x_1 so that we don't have to subtract b from $\sqrt{b^2 - 4ac}$ Now, a new formula for $x_1 =$

Use a similar new formula to compute x_2 (using 4-digit precision) and compute the relative error in x_2

What's the problem?

Solution: Use the new formula for x_1 when you have to subtract numbers which are similar in size, use the traditional formula for the other root.

When you subtract numbers of very similar size there will be a **loss of significance** or **subtractive cancellation** of digits when this operation is computed. AVOID DOING THIS!

The Ultimate Quadratic Formula

$$q \equiv -\frac{1}{2} \left[b + \operatorname{sign}(b) \sqrt{b^2 - 4ac} \right]$$

where

$$\operatorname{sign}(\mathbf{b}) = \begin{cases} 1 & b \ge 0\\ -1 & b < 0 \end{cases}$$

and

$$x_1 = \frac{q}{a}$$
 and $x_2 = \frac{c}{q}$