QUIZ 5

Numerical Analysis

Name: _____

Time Begun:	
Time Ended:	

Friday March 20 Prof. Ron Buckmire

Topic : Nonlinear Systems of Equations

TThe idea behind this quiz is for you to obtain more practice solving a non-linear system of equations. Specifically, I want you to show that you can calculate using Successive Substitution, Seidel Iteration or Newton's Method.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/370/09/
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday March 23, in class. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED.

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

1. In class we found one of the points of intersection of the hyperbola $4x^2 - y^2 = 1$ and the circle $(x - 1)^2 + y^2 = 2^2$ to be (1.1165151,1.9966032). $8x - 4x^2 + y^2 + 1$ $2x - x^2 + 4y - y^2 + 3$ $\vec{x} = \vec{x} + \vec{y} + \vec{y} = 1$

Let
$$g_1(x,y) = \frac{8x - 4x + y + 1}{8}$$
 and $g_2(x,y) = \frac{2x - x + 4y - y + 3}{4}$ where $\vec{G}(\vec{x}) = \begin{bmatrix} g_1(x,y) \\ g_2(x,y) \end{bmatrix}$

(a) [1 pt] Show that the fixed point(s) of the vector function $\vec{G}(\vec{x})$ are exactly the points of intersection of the hyperbola $4x^2 - y^2 = 1$ and circle $(x - 1)^2 + y^2 = 4$. (HINT: one way to do this is to show algebraically that the fixed points of \vec{G} satisfy the exact same equation that the points of intersection do.)

- (b) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1, 2)^T$ compute the next approximation to the fixed point of \vec{G} using Successive Substitution, $\vec{x}_k = \vec{G}(\vec{x}_{k-1})$
- (c) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1, 2)^T$ compute the next approximation to the fixed point of \vec{G} using Seidel Iteration.
- (d) [2 pts] Considering $\vec{f}(\vec{x}) = \begin{bmatrix} 4x^2 y^2 1\\ (x-1)^2 + y^2 2^2 \end{bmatrix}$ Find the Jacobian matrix J(x,y) for the system.
- (e) [3 pts] Starting with an initial guess of $\vec{x}_0 = (1, 2)^T$ compute the next approximation to the fixed point of \vec{G} (which is also the root of \vec{f}) using Newton's Method.

You may have to attach/staple an extra sheet with your calculations on it to support your answers.