QUIZ 2	Numerical Analysis
Name:	_
Time Begun: Time Ended:	Friday February 6 Prof. Ron Buckmire
Topic: Rates of convergence of functions	
The idea behind this quiz is for you togive you an opporelative rates of convergence of functions, grow more fan ability to find limits.	· · · · · · · · · · · · · · · · · · ·
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to fa	aculty.oxy.edu/ron/math/370/09/
1. Once you open the quiz, you have 30 minutes end time at the top of this sheet.	to complete, please record your start time and
2. You may use the book or any of your class not	es. You must work alone.
3. If you use your own paper, please staple it to the a stapler, buy one. QUIZZES WITH UNSTAR	1 0
4. After completing the quiz, sign the pledge belo to these rules.	w stating on your honor that you have adhered
5. Your solutions must have enough details such and determine HOW you came up with your s	
6. Relax and enjoy	
7. This quiz is due on Monday February 9 , in WILL BE ACCEPTED.	class. NO LATE OR UNSTAPLED QUIZZES
Pledge: I,, pledge my h that I have followed all the rules above to the letter	nonor as a human being and Occidental student, and in spirit.

1. Consider each of the following expressions f(h) as $h \to 0$. Express each of them in the form $f(h) = L + \mathcal{O}(h^{\alpha})$ with the "best" (most accurate) integer values of $\alpha > 0$. For each problem write down a value of α and L. You may use any method you like to find your gauge function h^{α} but show all your work and name the method you use in each case.

a.
$$e^{e^h}$$

b.
$$(1-h^2)^{-1}$$

c.
$$\frac{\ln(1+h)}{h}$$

d.
$$\cos(h^2)$$

e.
$$1 + \sin(h^3)$$