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1 Background

The nonlinear eigenvalue problem ∆u + λeu = 0 in the unit square with u = 0 on the
boundary is often referred to as “the classical Bratu problem” or “Bratu’s problem.” The
Bratu problem in 1-dimensional planar coordinates, u′′+λeu = 0 with u(0) = u(1) = 0 has
two known, bifurcated, exact solutions for values of λ < λc and no solutions for λ > λc.
The value of λc is simply 8(α2−1) where α is the fixed point of the hyperbolic cotangent
function coth(x). In this project, numerical approximations to the exact solution of
the one-dimensional planar Bratu problem will be computed using various numerical
methods. Of particular interest will be the application of nonstandard finite-difference
schemes known as Mickens finite differences to solve the problem. For extra credit, these
techniques can be applied to the classic Bratu problem in the unit square.

Our goal is to produce numerically accurate solutions to the 1-D Bratu problem
using consistent numerical approximations. We shall consider a problem “numerically
accurate” when the difference between our computed solution and the exact solution is
less than some given tolerance. A consistent numerical appoximation is one in which as
the level of discretization increases, the error goes to zero. In the case of the classic Bratu
problem there is no known exact solution, so we will consider the problem solved when
the difference between consecutive computed solution is less than some given tolerance.

2 The Planar Bratu Problem(s)

The classical Bratu problem is

∆u + λeu = 0 on Ω : {(x, y) ∈ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (1)

with u = 0 on ∂Ω (2)

where u is a function of x and y, λ is an unknown constant (eigenvalue), ∆ is the Laplacian

operator equal to
∂2

∂x2
+

∂2

∂y2
on Ω which is the unit square with its lower left corner at

the origin. The boundary condition is that u(x, y) is zero on the perimeter or boundary
of the square, denoted by ∂Ω. This version of the Bratu Problem can be referred to as
the 2-D Planar Bratu Problem. There is no known explicit exact solution to the 2-D
Planar Bratu Problem.

The 1-dimensional version of this problem is called the 1-D Planar Bratu Problem
and is

u′′(x) + λeu(x) = 0 0 ≤ x ≤ 1, (3)

with u(0) = 0 and u(1) = 0 (4)

The exact solution to (3) is known and can be presented here as

u(x) = −2 ln

[
cosh((x− 1

2
) θ

2
)

cosh( θ
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)

]
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where θ solves

θ =
√

2λ cosh

(
θ

4

)
. (6)

There are two solutions to (6) for values of 0 < λ < λc. For λ > λc there are no solutions.
The solution (5) is only unique for a critical value of λ = λc which solves

1 =
√

2λc sinh

(
θc

4

)
1

4
. (7)

By graphing the line y = θ and the curve y =
√

2λ cosh( θ
4
) for fixed values of λ = 1, 2, 3, 4

and 5 the solutions of (6) can be seen as the points of intersections of the curve and the
line in Figure 1. Clearly, there is only one solution when the y = θ line is exactly
tangential to the y =

√
2λ cosh( θ

4
) curve, which leads to the condition given in (7).
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Figure 1: Graphical depiction of dependence of solutions of (6) upon λ

Dividing (7) by (6) produces:

4

θc
= tanh

(
θc

4

)

⇒ θc

4
= coth

(
θc

4

)

⇒ α = coth (α)

The critical value θc is four times α, which is the positive fixed point of the hyperbolic
cotangent function, 1.19967864.

θc = 4.79871456 (8)

The exact value of θc can therefore be used in (7) to obtain the exact value of λc.

λc =
8

sinh2
(

θc

4

) = 8(α2 − 1) ⇒ λc = 3.513830719 (9)

The relationship between λ and θ for some values of λ less than λc are given in Table 1. If
you want to know the values of θ corresponding to other values of λ you could interpolate
between values in the table. Obviously, when λ = λc then θ1 = θ2 = θc and when λ > λc

there are no solutions to (6). Also, when 0 < λ < λc there are two solutions to (6). This
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λ θ1 θ2

0.5 1.0356946 13.0382393
1.0 1.5171645 10.9387028
1.5 1.9397652 9.5816998
2.0 2.3575510 8.5071995
2.5 2.8115549 7.5480981
3.0 3.3735077 6.5765692
3.5 4.5518536 5.0543427
λc 4.7987146 4.7987146

Table 1: Corresponding values of θ for various λ ≤ λc

means there are two valid functions u(x) which solve (3) for every value of λ below the
critical value λc.
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Figure 2: Bifurcated nature of the exact solution to the Bratu problem

Figure 2 shows how the maximum value of the solution function (5) depends on the
nonlinear eigenvalue λ with the critical value of λc highlighted at the “turning point.”
Table 1 and Figure 2 are two different ways of depicting the property of the solution that
it is double-valued for λ < λc. In the next section, numerical methods to compute these
solutions to (3) will be discussed.

3 Numerical Methods

In this section of the project, the details of the numerical methods used to compute solu-
tions to (3) shall be given. The method involves approximating the differential equation
with standard finite differences and using Newton’s Method to solve the resulting non-
linear system of equations. Both standard and nonstandard (Mickens) finite-difference
schemes can be used to approximate derivatives.

Finite Difference Methods

To solve a boundary value problem using finite differences involves discretizing the dif-
ferential equation and boundary conditions. This method transforms the problem into
a system of simultaneous nonlinear equations which are then usually easily solved using
Newton’s method. There are many choices for how to approximate the derivatives which
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appear in a differential equation. In this section of the paper standard finite differences
and nonstandard finite differences will be deployed. Nonstandard finite differences have
been extensively studied by Professor Ronald E. Mickens of Clark Atlanta University.
The first step in the computation of the numerical solution of (3) using a finite-difference
method is to approximate the continuous domain of the problem with a discrete grid.
The grid chosen was {xj}N

j=0 on the interval 0 ≤ x ≤ 1 where

0 = x0 < x1 < x2 < . . . < xj < . . . < xN = 1. (10)

For a uniform grid, the grid separation parameter h is constant and h = 1/N with
xk = 0 + kh for k = 0 to N . Using a standard finite-difference scheme, the discrete
version of the 1-D planar Bratu problem (3) will be

uj+1 − 2uj + uj−1

h2
+ λeuj = 0, j = 1, 2, . . . , N − 1 (11)

with discrete boundary conditions

u0 = 0 and uN = 0. (12)

The above equation (11) is known as an ordinary difference equation, or O∆E. The values
uj correspond to the unknown solution function u(x) being evaluated at the discrete grid
points xj, in other words, they are approximations to u(xj). The hope is that the exact
solution of the ordinary differential equation (ODE) evaluated at these discrete points
is close to the exact solution of the discrete version of the differential equation (O∆E).
Another way to say this is to talk about the discrete exact solution u(xj) and the exact
discrete solution uj. If the numerical solution technique for approximating the differential
equation and solving the approximate problem is a good one, these two values should
have a relationship. This is the main idea that you will be confirming in this Project for
a number of different scenarios or examples.

3.1 N=2 Example

Consider the case where the grid is split into just 2 equal sub-intervals, i.e. N = 2. Then
there are N +1 = 3 grid points, x0, x1 and x2 and three corresponding unknown function
values u0, u1 and u2. However, by applying the boundary conditions (12) we know that
u0 = 0 and u2 = 0. By applying these conditions to (11) we also know that there is only
N − 2 = 1 unknown value, u1, which solves the equation

−2u1

h2
+ λeu1 = 0 (13)

where h = 1/2.

QUESTION: Using λ = λc solve the above equation for u1 and compare it to the
value the exact solution in (5) has at x1 = 0.5. Note: this is a scalar root-finding problem

3.2 N=3 Example

Consider the case where the grid is split into just 3 equal sub-intervals, i.e. N = 3. Now
there are N +1 = 4 grid points, x0, x1, x2 and x3. You can show that there are now only
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N − 2 = 2 unknowns, u1 and u2 which solve the equations:

u2 − 2u1

h2
+ λeu1 = 0

−2u2 + u1

h2
+ λeu2 = 0 (14)

since u0 = u3 = 0 and h = 1/3. Note: this is a vector root-finding problem

QUESTION: Using λ = λc solve the above equation (14) for u1 and u2 and compare
it to the value the exact solution in (5) has at x1 = 1/3 and x2 = 2/3. What do you
notice about the relationship between the values of u1 and u2?

3.3 N=10, 20, 40, 50, 100, 200, 500, 1000, ... Example

As the number of subintervals N goes to infinity, the discrete grid begins to resemble the
continuous real line, so we expect the difference between the discrete exact solution and
the exact discrete solution to go to zero. If we define an error vector whose kth component
is ek = |u(xk) − uk| then the norm of this error vector should decrease (||~e|| → 0) as the
number of subintervals increases (N → ∞). The goal in this section is to get a sense of
how this happens, in other words, quantify the relationship between the error E and the
number of subintervals N (or equivalently, the grid separation parameter h = 1/N). As-
suming that the relationship looks like E = Chp then E = 0+O(hp). Use Approximation
Theory to find the curve of least square error which fits best to the data you have. You
should produce a table which has a column with N , a column with h, a column with E.
You can use more than the requested values of N = 2, 3, 10, 20, 40, 50, 100, 200, 500, 1000.

QUESTION: Produce an m-file which takes as input: N , the vector function ~f , its
Jacobian, an error tolerance; and produces as output: the converged vector solution, the
estimated error.

QUESTION: Produce a graph of E versus h which allows you to obtain a value for
p and thus make a statement about how the error E goes to zero: linearly, superlinearly,
quadratically or something else?

3.4 Nonstandard Finite Difference Example

A nonstandard finite-difference scheme for (3) is

uj+1 − 2uj + uj−1

2 ln[cosh(h)]
+ λeuj = 0, j = 1, 2, . . . , N − 1 (15)

The discretization given in (15) is an example of a Mickens discretization. Mickens has
repeatedly shown that one can find nonstandard finite difference schemes which produce
exact discrete solutions of a differential equation [3]. For example, in [4] the following
Mickens scheme

uj+1 − uj(
1 − e−αh

α

) = −αuj (16)

is an exact nonstandard finite difference scheme for the differential equation
du

dx
= −αu.

Also found in [4] is the following exact Mickens discretization for
du

dx
= −u3.

uj+1 − uj

h
= −

(
2uj+1

uj+1 + uj

)
uj+1u

2
j (17)
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A Mickens difference is a nonstandard finite-difference scheme which (1) approximates
a derivative using a nonlinear denominator function and/or (2) uses “non-local” or “off-
grid” representations of expressions in the differential equation.

The scheme given in (16) is an example of the use of a nonlinear denominator function
in a Mickens finite difference. Note that the denominator function in (16), φ(h) =
1 − e−αh

α
has the property that in the limit as h → 0, φ(h) → h. In general, the

denominator function φ in a Mickens finite-difference for the first derivative

u′ ≈ uj+1 − uj

φ(h)

has the property that φ(h) = h + o(h).
The scheme given in (17) is an example of a “non-local” discretization appearing

in a Mickens difference. The standard discrete representation of u3 would be expected
to be simply u3

j . However the unexpectedly florid discretization of this cubic term that
appears on the right-hand side of (17) leads to an exact discrete solution to the differential
equation.

The nonstandard finite difference scheme given in (15) is a Mickens difference for a
second derivative

u′′ ≈ uj+1 − 2uj + uj−1

φ(h)

where the denominator function φ(h) = 2 ln[cosh(h)] = h2 + o(h2). Thus, in the limit as
h → 0 the standard finite-difference scheme (11) and the Mickens-difference scheme (15)
will be identical. However, for the finite values of h at which numerical computations
are conducted the hypothesis is that the nonstandard form of the denominator function
φ(h) will lead to improved accuracy.

Using λ = λc and the Mickens discretization given in (15) try to obtain the relationship
between the error E and h, the grid separation parameter by solving the system for the
same N values as in Section 3.3.

4 Extra Credit

The Extra Credit problem involves solving the classic Bratu problem, i.e. the 2-D Planar
Bratu Problem using standard discretizations and Newton’s Method for Systems. In this
problem you have to discretize the unit square, so the exact discrete solution is denoted
ui,j and the discrete exact solution is u(xi, yj) where xi = 0 + i/N and i = 0, 1, . . . , N
and yj = 0 + j/N and j = 0, 1, . . . , N . In this case, the smallest value of N which makes
sense of N = 2 which gives you (N + 1)2 = 9 grid points, though only one where the
exact discrete solution is non-zero: u1,1. Repeat the questions from Section 3, this time,
in 2-dimensions.
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Assignment

Solving the Bratu Problem

1. Show that the given function u(x) in (5) is an exact solution of the boundary value
problem for the 1-D Bratu Problem given that θ satisfies (6).

2. Confirm the given values of θc and λc through computation

3. Produce an m-file which given a value of λ as input, outputs the two corresponding
values of θ

4. Create a graph with both solutions to the 1-D Bratu Problem for λ = 1.25

5. Solve the N=2 version of the 1-D Bratu Problem (using Newton’s Method) and
compare to the exact solution for λ = λc

6. Solve the N=3 version of the 1-D Bratu Problem (using Newton’s Method for
Systems) and compare to the exact solution for λ = λc

7. Write down the system of nonlinear equations with λ = λc for the discretized
version of the 1-D Bratu Problem for any N , including the corresponding Jacobian
matrix

Numerical Methods

1. Create an m-file which will solve the system of nonlinear equations corresponding to
discretizing the grid into N equal subintervals and compare this numerical solution
to the exact solution

2. Produce a table of values obtained by solving the 1-D Bratu Problem for different
increasing values of N which reflect the error E and the grid parameter h obtained
from using standard finite differences

3. Use Approximation Theory to find the curve of least square error of the form
E = Chp using standard finite differences, particularly the value of p

4. Produce a table of values obtained by solving the 1-D Bratu Problem for different
increasing values of N which reflect the error E and the grid parameter h obtained
from using Mickens finite differences

5. Use Approximation Theory to find the curve of least square error of the form
E = Chp using Mickenss finite differences, particularly the value of p

6. Discuss which finite difference technique has the more favorable error profile

EXTRA CREDIT

1. Write down the system of nonlinear equations for the discretized version of the 2-D
Bratu Problem for any N , including the corresponding Jacobian matrix

2. Solve the system of nonlinear equations for using a discretization of N > 50
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Report

Write a concise report containing the following sections.

1. Problem Overview: A brief statement of the project objective and a summary
of the steps you used to achieve it.

2. Mathematical Formulation: Summarize the equations used in your analysis.
Describe each variable in words. Be sure to identify the role of each equation in
the overall analysis.

3. Program Listings: You should produce m-files The purpose of each m-file should
be stated in the text of your report. Code listings, especially those that span
multiple pages, should appear in an Appendix. The input and output variables
for the modules need not be described separately as long as they are adequately
documented in the function prologue.

4. Results and Discussion: Provide answers to the questions posed in the Assign-
ment section, above. Your report need not following the numbering convention in
the Assignment so long as all the issues raised there are discussed.

5. Feedback on Group Dynamics: Provide a summary of how your group worked
together, summarizing how many meetings occurred, how long they lasted, who
was responsible for which sections of the project, et cetera. This could be done
through separate paragraphs, authored by each group member.

6. Conclusion: In one crisp paragraph, summarize the results of this project. Do not
present new information in the Conclusion.

The report is to be delivered in hard copy by 5:00 PM on the due date for the project.
The m-files must be emailed to me by this deadline.

Submission of Code

In addition to a hardcopy of the written report, the final working version of your Matlab

programs, along with basic instructions for running them, are to be included in email. The
instructions for each program should be contained in the email with the corresponding attached
m-file. The instructions should briefly (one or two sentences should do) describe how to run
your code. Be sure to specify any input parameters that may be needed. When I run your
code(s) I should be able to recreate all the results in your report.
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Grading Criteria

The following criteria will be used to grade the final project

Category Points
Technical content

Check of exact solution to 1-D Bratu Problem 5
Graphs of both solutions when λ = 1.25 10
Setting Up Newton’s Method to Solve 1-D Bratu Problem for any N 20

m-file which computes (~f , Jacobian) for Newton’s Method 5
Numerical Results

Accuracy of θc and λc values 5
Plot of θ versus λ 5
Tabulated Results for N = 2, 3, 10, 20, 40, 50, 100, 1000 using Mickens and Standard 20
Estimate of p from E versus h graphs using Standard FD to solve 5
Estimate of p from E versus h graphs using Mickens to solve 5

Documentation
Organization and documentation of m-files 5
Discussion of group dynamics 5
Grammar, style, spelling 10

Total 100
Extra Credit: Classic Bratu Problem in 2-D

Setting Up The Numerical Solution 20
Producing “Converged” Numerical Solution for N > 50 20
Surface Plots of the Numerical Solution 10

Extra Credit Total 50
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Report Style

The following items fall under the category of “style.”

• The names of all the group member should appear on the cover sheet

• All members of the Project Group (2-3 people) should sign the cover sheet.

• Each individual group member needs to submit an Individual Group evaluation
report form

• The report should be organized into major sections.

• The text should be written in complete sentences. It should be free of slang. All
abbreviations and acronyms should be defined.

• Figures must have captions. Axes must have labels. Figures and tables of results
may be placed at the end of the text body, but should not be placed in an appendix.
All figures and tables of results that are not discussed in the body of the text will
be ignored.

• Pages in your report should be numbered.

• Only items of secondary importance are put in an appendix.

• Generally, mathematical calculations should be word-processed. If your writing
is mechanically neat and tidy then you may include hand-written mathematical
equations

To simplify your report, assume that the reader

• is familiar with the finite differences,

• is a competent Matlab user,

Do not assume that the reader has a copy of the assignment sheet. This requires, for
example, that you define all variables and constants that appear in any equations you
present.
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