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Overview

• Digital representation of number

� Size limits

� Resolution limits

� The floating point number line

• Floating point arithmetic

� roundoff

� machine precision

• Implications for routine computation

� Use “close enough” instead of “equals”

� loss of significance for addition

� catastrophic cancellation for subtraction

• Truncation error

� Demonstrate with Taylor series

� Order Notation
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What’s going on here?

Spontaneous generation of an insignificant digit:

>> format long e % display lots of digits

>> 2.6 + 0.2

ans =

2.800000000000000e+00

>> ans + 0.2

ans =

3.000000000000000e+00

>> ans + 0.2

ans =

3.200000000000001e+00

>> 2.6 + 0.6

ans =

3.200000000000000e+00
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Digital Storage of Integers (1)

• Integers can be exactly represented by base 2

• Typical size is 16 bits

• 216 = 65536 is largest 16 bit integer

• [−32768, 32767] is range of 16 bit integers in twos

complement notation

• 32 bit and larger integers are available

Note: All standard mathematical calculations in Matlab

use floating point numbers. Describing binary storage

of integers is a prelude to discussing the binary storage

of non-integers.

Expert’s Note: The built-in int8, int16, int32, uint8,

uint16, and uint32 classes are meant as a

means of reducing data storage costs.
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Digital Storage of Integers (2)

Let b be a binary digit, i.e. 1 or 0

(bbbb)2 ⇐⇒ |23|22|21|20|

The rightmost bit is the least significant bit (LSB)

The leftmost bit is the most significant bit (MSB)

Example:

(1001)2 = 1× 23 + 0× 22 + 0× 21 + 1× 20

= 8 + 0 + 0 + 1 = 9
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Digital Storage of Non-integer Numbers (1)

• Use normalized scientific notation:

123.456 −→ 0.123456× 103

• Fixed number of bits are allocated to each number

� single precision uses 32 bits per floating point number

� double precision uses 64 bits per floating point number

• Total number of bits are split into separate storage for the

mantissa and exponent

� single precision: 1 sign bit, 23 bit mantissa, 8 bit exponent

� double precision: 1 sign bit, 52 bit mantissa, 11 bit

exponent
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Digital Storage of Non-integer Numbers (2)

Numeric values with non-zero fractional parts are stored as

floating point numbers.

All floating point values are represented with a normalized

scientific notation.

Example:

12.3792 = 0.123792︸ ︷︷ ︸
mantissa

×102
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Digital Storage of Non-integer Numbers (3)

Floating point values have a fixed number of bits allocated for

storage of the mantissa and a fixed number of bits allocated for

storage of the exponent.

Two common precisions are provided in numeric computing

languages

Precision
Bits for

mantissa

Bits for

exponent

Single 23 8

Double 53 11
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Digital Storage of Non-integer Numbers (4)

A double precision (64 bit) floating point number can be

schematically represented as

64 bits︷ ︸︸ ︷
b︸︷︷︸
sign

bb . . . . . . bbb︸ ︷︷ ︸
52 bit value
of mantissa

bbbbbbbbbbb︸ ︷︷ ︸
11 bit exponent,
including sign
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Digital Storage of Non-integer Numbers (5)

Floating Point mantissa expressed in powers of
1

2(
1

2

)0
= 1 not used

(
1

2

)1
= 0.5

(
1

2

)2
= 0.25

(
1

2

)3
= 0.125

(
1

2

)4
= 0.0625

...
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Digital Storage of Non-integer Numbers (6)

Example: Binary mantissa for x = 0.8125

Apply Algorithm 5.1

k 2−k bk rk = rk−1 − bk2
−k

0 NA NA 0.8125

1 0.5 1 0.3125

2 0.25 1 0.0625

3 0.125 0 0.0625

4 0.0625 1 0.0000

Therefore, the binary mantissa for 0.8125 is (exactly) (1101)2
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Digital Storage of Non-integer Numbers (7)

Example: Binary mantissa for x = 0.1

Apply Algorithm 5.1

k 2−k bk rk = rk−1 − bk2
−k

0 NA NA 0.1

1 0.5 0 0.1

2 0.25 0 0.1

3 0.125 0 0.1

4 0.0625 1 0.1 - 0.0625 = 0.0375

5 0.03125 1 0.0375 - 0.03125 = 0.00625

6 0.015625 0 0.00625

7 0.0078125 0 0.00625

8 0.00390625 1 0.00625 - 0.00390625 = 0.00234375

9 0.001953125 1 0.0234375 - 0.001953125 = 0.000390625

10 0.0009765625 0 0.000390625
...

...

Therefore, the binary mantissa for 0.1 is (00011 0011 . . .)2.

The decimal value of 0.1 cannot be represented by a
finite number of binary digits.
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Digital Storage of Non-integer Numbers (8)

Consequences

• Limiting the number of bits allocated for storage of the

exponent means that there are upper and lower limits on the

magnitude of floating point numbers

• Limiting the number of bits allocated for storage of the

mantissa means that there is a limit to the precision (number

of significant digits) for any floating point number.

• Most real numbers cannot be stored exactly (they do not

exist on the floating point number line)

� Integers less than 252 can be stored exactly. Try

>> x = 2^51

>> s = dec2bin(x)

>> x2 = bin2dec(s)

>> x2-x

� Numbers with 15 (decimal) digit mantissas that are the

exact sum of powers of (1/2) can be stored exactly
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Symbolic versus Numeric Calculation (1)

Commercial software for symbolic computation

• DeriveTM
• MACSYMATM
• MapleTM
• MathematicaTM

Symbolic calculations are exact. No rounding occurs because

symbols can be manipulated without substituting numerical

values.
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Symbolic versus Numeric Calculation (2)

Example: Evaluate f(θ) = 1− sin2 θ − cos2 θ
Numerical computation in Matlab:

>> theta = 30*pi/180; % must assign theta before it is used

>> f = 1 - sin(theta)^2 - cos(theta)^2

f =

-1.1102e-16

f is close to, but not exactly equal to zero because of roundoff.

Also note that f is a single value, not a formula.
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Symbolic versus Numeric Calculation (3)

Symbolic computation using the Symbolic Math Toolbox in

Matlab

>> t = sym(’t’) % declare t as a symbolic variable

t =

t

>> f = 1 - sin(t)^2 - cos(t)^2 % create a symbolic expression

f =

1-sin(t)^2-cos(t)^2

>> simplify(f) % ask Maple to make algebraic simplifications

f =

0

In the symbolic computation, f is exactly zero for any value of t.

There is no roundoff error in symbolic computation.
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Numerical Arithmetic

Numerical values have limited range and precision. Values

created by adding, subtracting, multiplying, or dividing floating

point values will also have limited range and precision.

Quite often, the result of an arithmetic operation between two

floating point values cannot be represented as another floating

point value.
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Integer Arithmetic

Operation Result

2 + 2 = 4 integer

9× 7 = 63 integer

12

3
= 4 integer

29

13
= 2 exact result is not an integer

29

1300
= 0 exact result is not an integer
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Floating Point Arithmetic in Matlab (1)

>> format long e

>> u = 29/13

u =

2.230769230769231e+00

>> v = 13*u

v =

29

>> v-29

ans =

0

Two rounding errors are made in sequence: (1) during

computation and storage of u, and (2) during computation and

storage of v. Fortuitously, the combination of rounding errors

produces the exact result.
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Floating Point Arithmetic in Matlab (2)

>> x = 29/1300

x =

2.230769230769231e-02

>> y = 29 - 1300*x

y =

3.552713678800501e-015

In exact arithmetic, the value of y should be zero.

The roundoff error occurs when x is stored. Since 29/1300

cannot be expressed with a finite sum of the powers of 1/2, the

numerical value stored in x is a truncated approximation to

29/1300.

When y is computed, the expression 1300*x evaluates to a

number slightly different than 29 because the bits lost in the

computation and storage of x are not recoverable.
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Roundoff in Quadratic Equation (1)

(See Example 5.3 in the text)

The roots of

ax
2
+ bx+ c = 0 (1)

are

x =
−b± √

b2 − 4ac
2a

(2)

Consider

x
2
+ 54.32x+ 0.1 = 0 (3)

which has the roots (to eleven digits)

x1 = 54.3218158995, x2 = 0.0018410049576.

Note that b2 � 4ac

b
2
= 2950.7� 4ac = 0.4
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Roundoff in Quadratic Equation (2)

Compute roots with four digit arithmetic√
b2 − 4ac =

√
(−54.32)2 − 0.4000

=
√
2951− 0.4000

=
√
2951

= 54.32

Use x1,4 to designate the first root computed with four-digit

arithmetic:

x1,4 =
−b+

√
b2 − 4ac
2a

(i)

=
+54.32 + 54.32

2.000
(ii)

=
108.6

2.000
(iii)

= 54.30 (iv)

Correct root is x1 = 54.3218158995. Four digit arithmetic

leads to 0.4 percent error in this example.
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Roundoff in Quadratic Equation (3)

Using four-digit arithmetic the second root, x2,4, is

x2,4 =
−b− √

b2 − 4ac
2a

=
+54.32− 54.32

2.000
(i)

=
0.000

2.000
(ii)

= 0, (iii)

An error of 100 percent!

The poor approximation to x2,4 is caused by roundoff in the

calculation of
√
b2 − 4ac. This leads to the subtraction of two

equal numbers in line (i).
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Roundoff in Quadratic Equation (4)

A solution: rationalize the numerators of the expressions for the

two roots:

x1 =
−b+

√
b2 − 4ac
2a

(
−b− √

b2 − 4ac
−b− √

b2 − 4ac

)
(4)

=
2c

−b− √
b2 − 4ac, (5)

x2 =
−b− √

b2 − 4ac
2a

(
−b+

√
b2 − 4ac

−b+
√
b2 − 4ac

)
(6)

=
2c

−b+
√
b2 − 4ac (7)
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Roundoff in Quadratic Equation (5)

Now use Equation (7) to compute the troublesome second root

with four digit arithmetic

x2,4 =
2c

−b+
√
b2 − 4ac

=
0.2000

+54.32 + 54.32

=
0.2000

108.6

= 0.001842.

The result is in error by only 0.05 percent.

The two formulations for x2,4 are algebraically equivalent. The

difference in the computed result is due to roundoff alone
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Roundoff in Quadratic Equation (6)

Repeat the calculation of x1,4 with the new formula

x1,4 =
2c

−b− √
b2 − 4ac

=
0.2000

+54.32− 54.32 (i)

=
0.2000

0
(ii)

=∞.

Limited precision in the calculation of
√
b2 + 4ac leads to a

catastrophic cancellation error in step (i)
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Roundoff in Quadratic Equation (7)

A robust solution is to use a formula that takes the sign of b into

account in a way that prevents catastrophic cancellation.

The ultimate quadratic formula:

q ≡ −1
2

[
b+ sign(b)

√
b2 − 4ac

]
where

sign(b) =

{
1 if b ≥ 0,
−1 otherwise

Then roots to quadratic equation are

x1 =
q

a
x2 =

c

q
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Roundoff in Quadratic Equation (8)

Summary

• Finite-precision causes roundoff in individual calculations

• Effects of roundoff accumulate slowly

• Subtracting nearly equal numbers leads to severe loss of

precision. A similar loss of precision occurs when two

numbers of very different magnitude are added.

• Since roundoff is inevitable, solution is to create better

algorithms
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Catastrophic Cancellation Errors (1)

For addition: The errors in

c = a+ b and c = a− b

will be large when a � b or a � b.

Consider c = a+ b with a = x.xxx . . .× 100,
b = y.yyy . . .× 10−8, where x and y are decimal digits.

Assume for convenience of exposition that z = x+ y < 10.

available precision︷ ︸︸ ︷
x.xxx xxxx xxxx xxxx

+ 0.000 0000 yyyy yyyy yyyy yyyy

= x.xxx xxxx zzzz zzzz yyyy yyyy︸ ︷︷ ︸
lost digits

The most significant digits of a are retained, but the least

significant digits of b are lost because of the mismatch in

magnitude of a and b.
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Catastrophic Cancellation Errors (2)

For subtraction: The error in

c = a− b

will be large when a ≈ b.

Consider c = a− b with

a = x.xxxxxxxxxxx1ssssss

b = x.xxxxxxxxxxx0tttttt

where x, y, s and t are decimal digits. The digits sss . . . and

ttt . . . are lost when a and b are stored in double-precision,

floating point format.
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Catastrophic Cancellation Errors (3)

Evaluate a− b in floating point arithmetic:

available precision︷ ︸︸ ︷
x.xxx xxxx xxxx 1

− x.xxx xxxx xxxx 0

= 0.000 0000 0000 1 uuuu uuuu uuuu︸ ︷︷ ︸
unassigned digits

= 1.uuuu uuuu uuuu × 10−12

The result has only one significant digit. Values for the uuuu

digits are not necessarily zero. The absolute error in the result is

small compared to either a or b. The relative error in the result is

large because ssssss− tttttt �= uuuuuu (except by chance).
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Catastrophic Cancellation Errors (4)

Summary

• Occurs in addition: α+ β when α � β or α � β

• Occurs in subtraction: α− β when α ≈ β

• Error caused by a single operation (hence the term

“catastrophic”) not a slow accumulation of errors.

• Can often be minimized by algebraic rearrangement of the

troublesome formula. (Cf. improved quadratic formula.)
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Machine Precision (1)

The magnitude of roundoff errors is quantified by machine

precision εm.

There is a number, εm such that

1 + δ = 1

whenever δ < εm.

In exact arithmetic, εm is identically zero.

Matlab uses double precision (64 bit) arithmetic. The built-in

variable eps stores the value of εm.

eps = 2.2204× 10−16
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Machine Precision (2)

Algorithm for Computing Machine Precision

epsilon = 1;

it = 0;

maxit = 100;

while it < maxit

epsilon = epsilon/2;

b = 1 + epsilon;

if b == 1

break;

end

it = it + 1;

end
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Implications for Routine Calculations

• Floating point comparisons should involve “close enough”

instead of exact equality

• Terminate iterations when subsequent values are “close

enough”.

• Express “close” in terms of

� absolute difference, or

� relative difference
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Floating Point Comparison

Don’t ask “is x equal to y”.

if x==y % Don’t do this

...

end

Instead ask, “are x and y ‘close enough’ in value”

if abs(x-y) < tol

...

end
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Absolute and Relative Error (1)

“Close enough” can be measured with either absolute error or

relative error, or both

Let

α = some exact or reference value

α̂ = some computed value

Absolute error

Eabs(α̂) =
∣∣α̂− α

∣∣
Relative error

Erel(α̂) =

∣∣α̂− α
∣∣∣∣αref∣∣

Often we choose αref = α so that

Erel(α̂) =

∣∣α̂− α
∣∣∣∣α∣∣
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Absolute and Relative Error (2)

Example: Approximating sin(x) for small x

Since

sin(x) = x− x3

3!
+

x5

5!
− . . .

we can approximate sin(x) with

sin(x) ≈ x

for small enough x < 1

The absolute error in this approximation is

Eabs = x− sin(x) = x3

3!
− x5

5!
+ . . .

And the relative error is

Eabs =
x− sin(x)
sin(x)

=
x

sin(x)
− 1
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Absolute and Relative Error (3)

Plot relative and absolute error in approximating sin(x) with x.
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Although the absolute error is relatively flat around x = 0, the

relative error grows more quickly. The relative error reflects the

fact that the absolute value of sin(x) is small near x = 0.

NMM: Unavoidable Errors in Computing page 43



Iteration termination (1)

An iteration generates a sequence of scalar values

xk, k = 1, 2, 3, . . .. The sequence converges to a limit ξ if

|xk − ξ| < δ, for all k > N,

where δ is a small.

In practice, the test is expressed as

|xk+1 − xk| < δ, when k > N.

NMM: Unavoidable Errors in Computing page 44

Iteration termination (2)

Absolute convergence criterion

In words:

Iterate until |x− xold| < ∆a

where ∆a is the absolute convergence tolerance.

In Matlab:

x = ... % initialize

xold = ...

while abs(x-xold) > deltaa

xold = x;

update x

end

Note: Matlab does not have an “until” structure. The

while construct involves a reverse in the direction of

the inequality.
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Iteration termination (3)

Relative convergence criterion

In words:

Iterate until

∣∣∣∣x− xold

xold

∣∣∣∣ < δr

where δr is the absolute convergence tolerance.

In Matlab:

x = ... % initialize

xold = ...

while abs((x-xold)/xold) > deltar

xold = x;

update x

end
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Example: Solve cos(x) = x (1)

Example: Solve cos(x) = x with Fixed Point Iteration

Obtain numerical solution to

cos(x) = x

The solution lies at the intersection of y = x and y = cos(x).
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Example: Solve cos(x) = x (2)

In Chapter 6 we describe fixed point iteration as a method for

obtaining a numerical approximation to the solution of a scalar

equation. For now, trust that the follow algorithm will eventually

give the solution.

1. Guess x0

2. Set xold = x0

3. Update guess

xnew = cos(xold)

4. If xnew ≈ xold stop; otherwise set xold = xnew and return

to step 3
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Solve cos(x) = x (3)

MATLAB implementation

x0 = ... % initial guess

k = 0;

xnew = x0;

while NOT_CONVERGED & k < maxit

xold = xnew;

xnew = cos(xold);

it = it + 1;

end
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Solve cos(x) = x (4)

Bad test # 1

while xnew ~= xold

This test will be true unless xnew and xold are exactly equal. In

other words, xnew and xold are equal only when their bit

patterns are identical. This is bad because

• Test may never be met because of oscillatory bit patterns

• If test is eventually met, the iterations will probably do more

work than needed
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Solve cos(x) = x (5)

Bad test # 2

while (xnew-xold) > delta

Will always fail if xnew < xold
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Solve cos(x) = x (6)

Workable test # 1: Absolute tolerance

while abs(xnew-xold) < delta

What value of delta to use?
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Solve cos(x) = x (7)

Workable test # 2: Relative tolerance

while abs(xnew-xold)/xref > delta

The user supplies appropriate value of xref. For this particular

iteration we could use xref = xold.

while abs(xnew-xold)/xold > delta

Note: For this particular problem the exact solution is O(1)
so the absolute and relative convergence tolerance will

terminate the calculations at roughly the same

iteration.
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Solve cos(x) = x (8)

Using the relative convergence tolerance, the code becomes

x0 = ... % initial guess

k = 0;

xnew = x0;

while (abs(xnew-xold)/xold > delta) & k < maxit

xold = xnew;

xnew = cos(xold);

it = it + 1;

end

Note: Parentheses around abs(xnew-xold)/xold > delta

are not needed, but are added to make the test clear.
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Truncation Error

Consider the series for sin(x)

sin(x) = x− x3

3!
+

x5

5!
− . . .

For small x, only a few terms are needed to get a good

approximation to sin(x). The . . . terms are “truncated”

ftrue = fsum + truncation error

The size of the truncation error depends on x and the number

of terms included in fsum
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Truncation of series for sin(x) (1)

function ssum = sinser(x,tol,n)

% sinser Evaluate the series representation of the sine function

%

% Synopsis: ssum = sinser(x)

% ssum = sinser(x,tol)

% ssum = sinser(x,tol,n)

%

% Input: x = argument of the sine function, i.e., compute sin(x)

% tol = (optional) tolerance on accumulated sum. Default: tol = 5e-9

% Series is terminated when abs(T_k/S_k) < delta. T_k is the

% kth term and S_k is the sum after the kth term is added.

% n = (optional) maximum number of terms. Default: n = 15

%

% Output: ssum = value of series sum after nterms or tolerance is met

if nargin < 2, tol = 5e-9; end

if nargin < 3, n = 15; end

term = x; ssum = term; % Initialize series

fprintf(’Series approximation to sin(%f)\n\n k term ssum\n’,x);

fprintf(’%3d %11.3e %12.8f\n’,1,term,ssum);

for k=3:2:(2*n-1)

term = -term * x*x/(k*(k-1)); % Next term in the series

ssum = ssum + term;

fprintf(’%3d %11.3e %12.8f\n’,k,term,ssum);

if abs(term/ssum)<tol, break; end % True at convergence

end

fprintf(’\nTruncation error after %d terms is %g\n\n’,(k+1)/2,abs(ssum-sin(x)));
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Truncation of series for sin(x) (2)

For small x, the series for sin(x) converges in a few terms

>> s = sinser(pi/6);

Series approximation to sin(0.523599)

k term ssum

1 5.236e-001 0.52359878

3 -2.392e-002 0.49967418

5 3.280e-004 0.50000213

7 -2.141e-006 0.49999999

9 8.151e-009 0.50000000

11 -2.032e-011 0.50000000

Truncation error after 6 terms is 3.56382e-014

The absolute truncation error in the series is small relative to the

true value of sin(π/6)

>> err = (s-sin(pi/6))/sin(pi/6)

err =

-7.1276e-014
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Truncation of series for sin(x) (3)

For larger x, the series for sin(x) converges more slowly

>> s = sinser(15*pi/6);

Series approximation to sin(7.853982)

k term ssum

1 7.854e+000 7.85398163

3 -8.075e+001 -72.89153055

5 2.490e+002 176.14792646

7 -3.658e+002 -189.61411536

9 3.134e+002 123.74757368

11 -1.757e+002 -51.97719366

13 6.948e+001 17.50733908

15 -2.041e+001 -2.90292432

17 4.629e+000 1.72578031

19 -8.349e-001 0.89092132

21 1.226e-001 1.01353632

23 -1.495e-002 0.99858868

25 1.537e-003 1.00012542

27 -1.350e-004 0.99999038

29 1.026e-005 1.00000064

Truncation error after 15 terms is 6.42624e-007

Increasing the number of terms will allow the series to converge

within the default error tolerance of 5× 10−9 used in sinser.

A better solution to the slow convergence of the series are

explored in Exercise 23.
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Taylor Series

For a sufficiently continuous function f(x) defined on the

interval x ∈ [a, b] we define the nth order Taylor Series

approximation Pn(x)

Pn(x) =f(x0) + (x− x0)
df

dx

∣∣∣∣
x=x0

+
(x− x0)

2

2

d2f

dx2

∣∣∣∣∣
x=x0

+ · · ·+ (x− x0)
n

n!

dnf

dxn

∣∣∣∣
x=x0

Then there exists ξ(x) with x0 ≤ ξ(x) ≤ x such that

f(x) = Pn(x) + Rn(x)

and

Rn(x) =
(x− x0)

(n+1)

(n+ 1)!

d(n+1)f

dx(n+1)

∣∣∣∣∣
x=ξ
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Taylor Series (2)

Big “O” notation

f(x) = Pn(x) +O
(
(x− x0)

(n+1)

(n+ 1)!

)

or, for x− x0 = h we say

f(x) = Pn(x) +O
(
h
(n+1)

)
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Taylor Series Example

Consider the function

f(x) =
1

1− x

The Taylor Series approximations to f(x) of order 1, 2 and 3 are

P1(x) =
1

1− x0

P2(x) =
1

1− x0
+

x− x0

(1− x0)2

P3(x) =
1

1− x0
+

x− x0

(1− x0)2
+
(x− x0)

2

(1− x0)3
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Taylor Series (4)
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Roundoff and Truncation Errors (1)

Roundoff and truncation errors are both present in any numerical

computation.

Example:

Finite difference approximation

A finite difference approximation to f ′(x) = df/dx is

f
′
(x) =

f(x+ h)− f(x)

h
− h

2
f
′′
(x) + . . .

This approximation is said to be first order because the leading

term in the truncation error is linear in h. Dropping the

truncation error terms we obtain

f
′
fd(x) =

f(x+ h)− f(x)

h

and

f
′
fd(x) = f

′
(x) +O(h)
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Roundoff and Truncation Errors (2)

To study the roles of roundoff and truncation errors1., compute

the finite difference approximation to f ′(x) when f(x) = ex

f(x) = e
x
=⇒ f

′
(x) = e

x

The relative error in the f ′
fd(x) approximation to

d

dx
ex is

Erel =
f ′
fd(x)− f ′(x)

f ′(x)
=

f ′
fd(x)− ex

ex

1The finite difference approximation is usually applied in models of differential equations
where f(x) is unknown
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Roundoff and Truncation Errors (3)

Evaluating Erel for a range of h gives the following plot
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Truncation error dominates at large h. Roundoff error in

f(x+ h)− f(h) dominates as h → 0.
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