Test 2: Numerical Analysis

Math 370
Friday, November 19, 2004
Name: \qquad

Directions: Read ALL 3 (three) problems before answering any of them because they are related. This is a one hour, closed notes, closed book, test. This test has 6 pages. There is this coversheet, 4 pages of questions and the last page is a graph. You must show all relevant work to support your answers. Use complete English sentences and clearly indicate your final answer from your "scratch work."

No.	Score	Maximum
1		30
2		50
3		20
TOTAL		100

1. [30 pts. total] Iterative Solution of Nonlinear Systems: Theory.

The goal of this problem is for you to illustrate your understanding of Newton's Method applied to nonlinear systems by modifying it in two different ways. Recall that Newton's Method applied to $\left[\begin{array}{l}f_{1}(x, y) \\ f_{2}(x, y)\end{array}\right]=\vec{f}(\vec{x})=\overrightarrow{0}$ can be written in Fixed Point Iteration form as

$$
\begin{gathered}
\vec{x}^{(k+1)}=\vec{G}\left(\vec{x}^{(k)}\right) \text { or }\left[\begin{array}{l}
x^{(k+1)} \\
y^{(k+1)}
\end{array}\right]=\left[\begin{array}{c}
g_{1}\left(x^{(k)}, y^{(k)}\right) \\
g_{2}\left(x^{(k)}, y^{(k)}\right)
\end{array}\right] \text { and } \vec{x}^{(0)}=\left[\begin{array}{c}
x^{(0)} \\
y^{(0)}
\end{array}\right] \text { where } \\
g_{1}(x, y)=x-\frac{f_{1}(x, y) \frac{\partial f_{2}}{\partial y}(x, y)-f_{2}(x, y) \frac{\partial f_{1}}{\partial y}(x, y)}{\operatorname{det}(J(x, y))} \\
g_{2}(x, y)=y-\frac{f_{2}(x, y) \frac{\partial f_{1}}{\partial x}(x, y)-f_{1}(x, y) \frac{\partial f_{2}}{\partial x}(x, y)}{\operatorname{det}(J(x, y))}
\end{gathered}
$$

and $\operatorname{det} J(x, y)=\frac{\partial f_{1}}{\partial x}(x, y) \frac{\partial f_{2}}{\partial y}(x, y)-\frac{\partial f_{1}}{\partial y}(x, y) \frac{\partial f_{2}}{\partial x}(x, y)$
(a) [20 points]. Using similar notation as above, write down a functional iteration formula which would represent computing the $\vec{x}^{(k+1)}$ approximation from the \vec{x}^{k} approximation, using Lazy Newton's Method (also known as the "Fixed Jacobian" Method) for the same problem $\vec{f}(\vec{x})=\overrightarrow{0}$. Be very specific to indicate which iterate is inputted into which function.
(b) [10 points]. Use your Lazy Newton's formula in (a) to write down a specific formula for how to compute the third iterate $\vec{x}^{(3)}$ from the second iterate $\vec{x}^{(2)}$.
2. [50 pts. total] Iterative Solution of Nonlinear Systems: Application.

Consider the nonlinear system

$$
\begin{aligned}
& f_{1}(x, y)=y^{2}-x=0 \\
& f_{2}(x, y)=x y-1=0
\end{aligned}
$$

(a) [30 points]. Let $\vec{x}^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and compute $\vec{f}\left(\vec{x}^{(0)}\right)$ and $J\left(\vec{x}^{(0)}\right)$ as well as $\left\|\vec{f}\left(\vec{x}^{(0)}\right)\right\|$ and $\left\|J\left(\vec{x}^{(0)}\right)\right\|$ (use the same norm for the last two).
(b) [20 points]. Starting with $\vec{x}^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ compute the second iterate $\vec{x}^{(2)}$ using Lazy Newton's Method.
3. [20 pts. total] Iterative Solution of Nonlinear Systems: Analysis.

Here are the numerical results solving the system using Newton's Method for Systems.

Newton's Method Results

k	$x^{(k)}$	$y^{(k)}$
0	1.00000000	0.00000000
1	0.00000000	1.00000000
2	1.00000000	1.00000000
3	1.00000000	1.00000000
\vdots	\vdots	\vdots

(a) [5 points]. Confirm that the nonlinear system has one solution, at $(1,1)$.
(b) [10 points]. Choose your favorite norm and compute the error between the exact solution and each of your approximations using Lazy Newton's Method (your answers from $2(b)$).
(c) [5 points]. Which method (Newton or Lazy Newton) produces the most accurate estimate to the exact solution of the given system after 2 iterations? Give a reason which explains your results.

