Differential Equations

Math 341 Fall 2013
MWF 12:50-1:45pm Fowler 307
(C)2013 Ron Buckmire

Worksheet 13

TITLE Euler's Method for Systems of ODEs
CURRENT READING Blanchard, 2.5

Homework Assignments due Friday October 11

Section 2.2: 7, 8, 11, 21* (EXPLAIN!), 24, 26.
Section 2.4: 2, 5, 7, 8.
Section 2.5: 2, 3.
Chapter 2 Review: $2,3,7,12,1315,16,20,30^{*}$
SUMMARY
It's baaack! We'll look at how to use Euler's Method for estimating solutions to systems of ODEs, i.e. $\frac{d \vec{x}}{d t}=\vec{F}(\vec{x})$.

1. Euler's Method for Systems

The algorithm for generating approximate solutions to the ODE $\frac{d \vec{x}}{d t}=\vec{F}(\vec{x})$ with initial condition $\vec{x}(0)=\overrightarrow{x_{0}}$ is

$$
\vec{x}_{\text {new }}=\vec{x}_{\text {old }}+\vec{F}\left(\vec{x}_{\text {old }}\right) \Delta t
$$

EXAMPLE

A lot of the time the systems we will be looking at are systems of two ODEs, so in the case the IVP looks like

$$
\begin{array}{ll}
\frac{d x}{d t}=f(x, y), & x(0)=x_{0} \\
\frac{d y}{d t}=g(x, y), & y(0)=y_{0}
\end{array}
$$

The Euler's Method algorithm for a system of two ODEs looks like

$$
\begin{aligned}
x_{\text {new }} & =x_{\text {old }}+f\left(x_{\text {old }}, y_{\text {old }}\right) \Delta t \\
y_{\text {new }} & =y_{\text {old }}+g\left(x_{\text {old }}, y_{\text {old }}\right) \Delta t
\end{aligned}
$$

Exercise

Conside the system $\frac{d x}{d t}=x+y ; \quad \frac{d y}{d t}=4 x-2 y$. Starting at $(x, y)=(1,0)$ and $\Delta t=0.5$ let's take two "Euler steps" to approximate the solution curve through this point.

In Worksheet \#10 we were introduced to the Lotka-Volterra model of predator-prey populations.

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-1.2 R F \\
& \frac{d F}{d t}=-F+0.9 R F
\end{aligned}
$$

Group Work

Let's use Euler's Method with a $\Delta t=1$ and the table below to estimate the population of rabbits and foxes after 3 time-steps, starting with $R(0)=1, F(0)=1$

t	R	F	R^{\prime}	F^{\prime}	ΔR	ΔF	Δt

Clearly, the most efficient way to do this would be to use a computer. Go to the computers and look at the spreadsheet PredatorPrey.xls on the S-drive and verify (and extend) your calculations.

