Test 2: DIFFERENTIAL EQUATIONS

Math 341 Fall 2013 Friday November 22
(©2013 Ron Buckmire 12:50-1:45pm

Name: B UCKNW/?/(;

Directions: Read all problems first before answering any of them.

There are six (6) pages in this test. This is a 55-minute, limited-

notes™, closed book, test. No calculators. You must show all

relevant work to support your answers. Use complete English sen-
tences as much as possible and CLEARLY indicate your final answers

to be graded from your “scratch work.”

>l<You may use a one-sided 8.5” by 11” “cheat sheet” which must be stapled to the

exam.

Offer: If there is a formula or piece of information that you feel that
you need in order to solve a problem, I will provide it to you at a
non-negotiable rate of at least a one point deduction.

Pledge: 1, . pledge my
honor as a human being and Occidental student, that I have fol-

lowed all the rules above to the letter and in spirit.

No. Score Maximum
1 15
2 15
3 20
BONUS 5
Total 50




1. /15 points total.] Linear Systems of Differential Equations, Trace-Determinant
Plane, Bifurcation. VISUAL & ANALYTIC & VERBAL.

Consider %f— = AZ where A = { @

) 1 and « is a known real-valued parameter. Recall

T++T?2—-4D

5 where T is the trace

that the eigenvalues of the matrix A are given by A =
of the matrix A and D is the determinant of matrix A.

1(a) [5 points|. Compute the trace T and determinant D of the matrix A in terms of the
values of . Show that the algebraic relationship between the trace 7' and the determinant
D for the matrix A is T? — 4D — 4 = 0 for all values of a.
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1(b) /5 points]. Sketch a graph in the trace-determinant plane depicting the relationship
between the trace T" and determinant D for the given matrix A as « changes. On the
same axes, sketch the standard graph in the trace-determinant plane which separates the
occurrence of real eigenvalues from complex eigenvalues for any matrix. [HINT: Label each
of your graphs and axes!|
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1(c) [5 points|. Explain why the system of differential equations pri AZ corresponding
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] will never have periodic solutions (i.e. spirals or centers) regardless of the
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2. [15 points total.] Linearization, Hamiltonian function, Gradient function, Jaco-
bian, Lyapunov function. ANALYTIC, VERBAL & VISUAL.

Determine whether the following statements are TRUE or FALSE and place your answer
in the box. To receive FULL credit, you must also give a brief, and correct, explanation in
support of your answer! The explanation for your answer is worth FOUR POINTS while
your TRUE or FALSE answer is worth 1 point.

Consider the quasi-linear system below (3 is a known real-valued parameter):

E _ gyren = £049)

dt
%‘% = Pzt - 5 (X/j)
2(a) TRUE or FALSE? “The function H(z,y) = fzy + e*¥ is a Hamiltonian function
for the given nonlinear system of ODEs.” ) - d H
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2(b) TRUE or FALSE? “The function G(z,y) = Bzy + €*'¥ is a Gradient function for
the given nonlinear system of ODEs.” > O
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2(c) TRUE or FALSE? “The function L(z,y) = —fzy — e®¥ is a Lyapunov function for
the given nonlinear system of ODEs.”
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3. [20 points total.] Laplace Transforms, Partial Fractions, Eigenvector, Eigenval-
ues, Phase Potraits. ANALYTIC & VERBAL.
Consider the BONUS question from 2013 Exam 1:

v" + 3y' + 2y = 0 where y(0) =1, ¢'(0) = 0.

3(a) [5 points]. Show that the Laplace Transform Y'(s) of the exact solution y(t) to this

s+3
problem is Y'(s) = TG
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3(b) /5 points]. Use the result in 3(a ) to show that the exact solution to y” + 3y’ + 2y = 0
where y(0) = 1,3/(0) = 0 is y(t) = 2™ — ™.
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3(c) [5 points]. Rewrite the original second order differential equation y” + 3y’ + 2y = 0 into

d . t
a two-dimensional system of first order differential equations d—:‘z = AT where ¥ = { 5,<( t)) }

(1) . Write down the exact solution Z(t) to this initial value
problem in the form c;eM@) + cpe*?it,, where AT, = A0, and Aty = \t,. [HINT: You
should not have to compute any eigenvectors or eigenvalues for this problem.]
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with initial condition #(0) =

3(d) /5 points]. Which of the following figures contains a phase portrait that belongs to the
2-dimensional linear system of first order differential equations discussed in 3(c)? EXPLAIN
YOUR ANSWER. What information do you use to make your choice of figure?
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BONUS. /5 points]. Show that the Inverse Laplace Transform of F(s) = ‘
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f(£) = (t — Q)H(t —a), ie. L{(t — Q)H(t —a)} =

R Sketch the graph of f(t), assuming
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