Differential Equations

Math 341 Fall 2010 © 2010 Ron Buckmire

MWF 2:30-3:25pm Fowler 307 http://faculty.oxy.edu/ron/math/341/10/

Worksheet 29: Wednesday December 1

TITLE Laplace Transforms and Introduction to Convolution

CURRENT READING Blanchard, 6.5

Homework Assignments due Monday December 6

Section 6.3: 5, 6, 8, 9, 10, 15, 18, 27, 28.

Section 6.4: 1, 2, 5, 7, 8.

Section 6.5: 2, 5, 6, 9

SUMMARY

We shall discuss the equivalent of the product rule for Laplace Transforms and be introduced to the concept of the convolution of two functions.

1. Product Rule for Laplace Transforms

DEFINITION: convolution

If two functions f(t) and g(t) are piecewise continuous on $[0, \infty)$ then **the convolution of** f **and** g, usually denoted f * g is defined to be

$$\int_0^t f(\tau)g(t-\tau)d\tau$$

NOTE: this "product" is a function of t. The use of the "*" symbol is deliberate, since the convolution operation has the following familiar properties:

THEOREM: properties of convolution

If f, g and h are piecewise continuous on $[0, \infty)$, then

I. f * g = g * f (Commutative)

II. f * (g + h) = f * g + f * h (Distributive Under Addition)

III. f * (g * h) = (f * g) * h (Associative)

IV. f * 0 = 0 (Existence of Zero Object)

THEOREM: The convolution theorem

If f(t) and g(t) are piecewise continuous on $[0, \infty)$ and of exponential order so that $F(s) = \mathcal{L}[f(t)]$ and $G(s) = \mathcal{L}[g(t)]$ then $\mathcal{L}[f * g] = F(s)G(s)$.

1

Corollary

$$\mathcal{L}^{-1}[F(s)G(s)] = f * g.$$

Exercise Evaluate $\mathcal{L}\left[\int_0^t e^{\tau} \sin(t-\tau)d\tau\right]$. [HINT: use the convolution theorem!]

EXAMPLE

The convolution theorem allows us to find inverse Laplace Transforms without resorting to partial fractions.

For example, show that $\mathcal{L}^{-1}\left[\frac{k}{s^4+k^2s^2}\right] = \frac{kt-\sin(kt)}{k^2}$ by using the Convolution Theorem AND by using Partial Fractions.

Using Partial Fractions

Using Convolution

2. The General Solution To A Non-Homogeneous Linear Second Order ODE

Consider y'' + py' + qy = f(t) with y(0) = 0 with y'(0) = 0. It can be shown that the exact solution y(t) (for t > 0) to this problem is given by a convolution, namely $\xi(t) * f(t)$ where $\mathcal{L}[\xi(t)] = \frac{1}{s^2 + ps + q}$

This is a pretty incredible result. It is known as **Duhamel's Principle**.

What one does is show that the $y = \xi(t)$ is the solution to the **unit impulse** version of the problem, i.e. $y'' + py' + qy = \delta_0(t)$ with y(0) = 0 with y'(0) = 0. Thus, if one wants to solve any other non-homogeneous problem all one needs to do is solve the unit impulse problem, and **convolve** that solution with the given non-homogeneous function.

EXAMPLE

Show that the general solution to y'' + y = f(t), y(0) = 0, y'(0) = 0 is $y(t) = \int_0^t \sin(t - u) \ f(u) \ du$

3. Derivatives of Laplace Transforms

EXAMPLE

Show that $\frac{d}{ds}F(s) = -\mathcal{L}[tf(t)]$ and $\frac{d^2}{ds^2}F(s) = \mathcal{L}[t^2f(t)]$.

THEOREM: Derivatives of Laplace Transforms

When $F(s) = \mathcal{L}[f(t)]$, and $n = 0, 1, 2, \dots \mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s)$

Exercise We now have TWO different ways to show that $\mathcal{L}[te^{at}] = \frac{1}{(s-a)^2}$ WITHOUT EVALUATING AN INTEGRAL. Do this.

4. Laplace Transform of an Integral

We can use the Convolution Theorem with g(t) = 1 and show that $\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{F(s)}{s}$

$\overline{\text{NOTE}}$

I. Multiplication of f(t) by t generally involves differentiation of its Laplace Transform F(s) with respect to s.

II. Division of F(s) by s generally involves anti-differentiation of its Inverse Laplace Transform f(t) with respect to t

Mathematically, these statements can be expressed as

I. $\mathcal{L}[tf(t)] = \frac{d}{ds}(\mathcal{L}[f(t)])$ and II. $\mathcal{L}[f(t)] = \frac{\mathcal{L}[f'(t)]}{s}$ and are always true if the Function-Transform pair $f(t) \leftrightarrow F(s)$ has the property that f(0) = 0.

GROUPWORK
Find
$$\mathcal{L}^{-1}\left[\frac{1}{s(s^2+1)}\right]$$

5. Volterra Integral Equations

A Volterra integral equation or integro-differential equation is an equation where the unknown function f(t) (and/or f'(t)) appears on one side of the equation and in an integral on the other side, i.e.

$$f(t) = g(t) + \int_0^t f(\tau)h(t-\tau)d\tau$$

These kinds of problems show up in many different applications, often involving biological systems.

EXAMPLE

Zill, page 309, Example 5. Solve
$$f(t) = 3t^2 - e^{-t} - \int_0^t f(\tau)e^{t-\tau}d\tau$$

Exercise Zill, page 313, HW #46. Solve
$$y'(t) + 6y(t) + 9 \int_0^t y(\tau) d\tau = 1$$
, $y(0) = 0$