Differential Equations

Math 341 Fall 2010
MWF 2:30-3:25pm Fowler 307
(C) 2010 Ron Buckmire
http://faculty.oxy.edu/ron/math/341/10/

Worksheet 7: Friday September 17

TITLE Introduction to Bifurcations
CURRENT READING Blanchard, 1.7

Homework Assignments due Friday September 24

Section 1.7: 3, 6, 8, 12, 15.
Section 1.8: 4, 5, 8, 9, 17, 18, 20. Section 1.9: 4, 5, 9, 12, 19.

SUMMARY

We will learn about a modern analytical technique which allows one to analyze differential equations which contain parameters.

1. Parameter Sensitivity

Consider a model for logistic growth of a fish population with constant harvesting given by the IVP $P^{\prime}=P(5-P)-h, \quad P(0)=P_{0}$ where $h \geq 0$. Let's investigate how or if the solution changes as the values of the parameter h changes.

Group Work

In the space below, draw phase lines for the critical points of the above IVP when the value of h equals $0,2,4,6$ and 8 . Identify and classify any and all critical points for each value of h. What do you notice?

Is there a particular value of h for which the nature of the solution changes? If so, find it.

DEFINITION: bifurcation

A change in the qualitative nature of the phase portrait or long-term behavior of the solution of a differential equation when the value of a parameter changes is called a bifurcation of the DE . The value at which such changes occur is known as a bifurcation point or bifurcation value of the DE .

DEFINITION: hyperbolic and nonhyperbolic critical points

A critical point of an autonomous DE $y^{\prime}=f(y)$ is said to be nonhyperbolic if arbitrarily small changes (known as perturbations) in $f(y)$ cause a bifurcation in the DE, i.e. critical points appear or disappear, or change the nature of their stability. If perturbations to $f(y)$ cause changes in the quantitative but not qualitative nature of the critical points, these critical points are called hyperbolic.

2. Analysis of Bifurcations

DEFINITION: bifurcation diagram

A bifurcation diagram is a picture of the phase lines near a bifurcation value. It appears as a curve in the plane with the autonomous variable y on the vertical axis, and the bifurcation paraemeter on the horizontal axis. Generally a dotted line is used to indicate unstable sections of the curve (i.e. sources) and a solid line is used to indicate stable sections (i.e. sinks).
EXAMPLE Consider the one-parameter family of autonomous DE
$\frac{d y}{d t}=y^{2}+\mu$, where μ is a parameter which can take on any real value. Let's sketch the bifurcation diagram of this DE .

This bifurcation is called a saddle node bifurcation. This is probably the most typical kind of bifurcation to arise.

THEOREM

Consider a one-parameter family of autonomous DEs where $y^{\prime}=f(y ; \alpha)$ and α is a parameter.
The value α_{0} will be a bifurcation value if and only if $f\left(y_{0} ; \alpha_{0}\right)=0$ and $f_{y}\left(y_{0} ; \alpha_{0}\right)=0$ simultaneously.
(NOTE: This is an 'If and only If' theorem which means the converse is true, i.e. $A \Rightarrow B$ and $B \Rightarrow A$ are both implied. Generally, definitions of quantities are always "If and only If" statements.)

GroupWork

Consider the following three different autonomous ODEs with an unknown real-valued parameter r. Draw bifurcation diagrams for each.
GROUP A: $y^{\prime}=r y-y^{2}$
GROUP B: $y^{\prime}=r y-y^{3}$
GROUP C: $y^{\prime}=r y+y^{3}$

These types of bifurcations are known as the transcritical, supercritical pitchfork and subcritical pitchfork bifurcations, respectively.

Homework

Blanchard, page 107, $\# 8$. For the one-parameter family $y^{\prime}=e^{-y^{2}}+\alpha$, find the bifurcation values of α and describe the bifurcation that takes place at each value. [HINT: Remember the Linearization Theorem!]

