Quiz 6	Differential Equations
Name:	
Time Begun:	Monday November 22 Prof. Ron Buckmire
Topic: Laplace Transforms	
The idea behind this quiz is to provide you with an opport Transofrms and be introduced to a special function.	unity to demonstrate your comfort with Lapace
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to fac	ulty.oxy.edu/ron/math/341/10/
1. Once you open the quiz, you have 30 minutes to end time at the top of this sheet.	o complete, please record your start time and
2. You may use the book or any of your class notes	s. You must work alone.
3. If you use your own paper, please staple it to the a stapler, buy one. QUIZZES WITH UNSTAPL	
4. After completing the quiz, sign the pledge below to these rules.	stating on your honor that you have adhered
5. Your solutions must have enough details such th and determine HOW you came up with your solutions.	- *
6. Relax and enjoy	
7. This quiz is due on Monday November 2 QUIZZES WILL BE ACCEPTED.	9, by 5pm. NO LATE OR UNSTAPLED

Pledge: I,________, pledge my honor as a human being and Occidental student,

that I have followed all the rules above to the letter and in spirit.

1. The Gamma Function is defined as

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt, \quad (\alpha > 0).$$

- (a) 1 point. Show that $\Gamma(1) = 1$.
- **(b)** 2 points. Show that $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

(c) 3 points. Use your results in (a) and (b) to show that $\Gamma(n+1) = n!$, where n is a positive integer. (HINT: use mathematical induction).

(d) 4 points. Use all the previous results to show that $\mathcal{L}[t^{\alpha}] = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}}$ and $\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}$ when n is a positive integer.