$D \cup M$	TIC	\cap T	777	0
BON	$\cup \supset$	QU	1L	Q

DIFFERENTIAL EQUATIONS

Name:	
raine.	

Friday December 3
Prof. Ron Buckmire

Topic: Advanced Laplace Transforms

The idea behind this quiz is to provide you with an opportunity to demonstrate your ability with inverting Laplace Transforms of a complicated function.

Reality Check:

EXPECTED SCORE :	/10	ACTUAL SCORE :	$_{}/10$

Instructions:

- 0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/341/10/
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This bonus quiz is due on Monday December 6, at the beginning of class. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED.

Pledge: I,	, pledge my honor as a human being and Occidental student
that I have followed all the rules	above to the letter and in spirit.

1. We're interested in finding the function f(t) whose Laplace Transform is

$$F(s) = A(s) - B(s) = \frac{1}{s^2} - \frac{e^{-s}}{s(1 - e^{-s})}, \quad s > 0$$

(a) 2 points. Compute $\mathcal{L}^{-1}\left[\frac{1}{s^2}\right] = a(t)$.

(b) 2 points. If one considers $\frac{1}{1-e^{-s}}$ as the sum of a geometric series $\sum_{k=0}^{\infty} ar^k$ with first term a=1 and ratio $r=e^{-s}$ then show that $\frac{e^{-s}}{s(1-e^{-s})}$ can be written as $\sum_{k=1}^{\infty} \frac{e^{-ks}}{s} = \frac{e^{-s}}{s} + \frac{e^{-2s}}{s} + \frac{e^{-3s}}{s} + \dots$

(c) 3 points. Recall that $\mathcal{L}^{-1}\left[e^{-as}F(s)\right] = f(t-a)\mathcal{H}(t-a)$. Using the result given in (b), compute $\mathcal{L}^{-1}\left[\frac{e^{-s}}{s(1-e^{-s})}\right] = b(t)$.

(d) 3 points. Give a sketch of a(t), b(t) and f(t) = a(t) - b(t) below for t > 0 (Use different pairs of axes for each graph.)