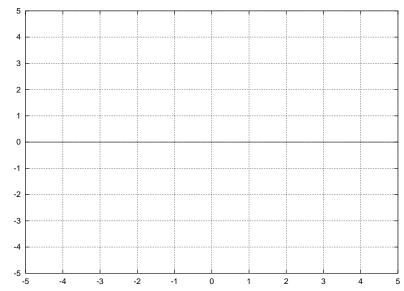
Math 341 Fall 2010	
BONUS QUIZ 2	Differential Equations
Name:	
	Friday October 29 Prof. Ron Buckmire
Topic: Visualizing Solutions of Linear Systems of	ODEs
The idea behind this quiz is to provide you with an opportun techniques for systems of n linear ordinary differential equations of n linear ordinary differential equations.	
Reality Check:	
EXPECTED SCORE :/5	ACTUAL SCORE :/5
Instructions:	
0. Please look for a hint on this quiz posted to facult	lty.oxy.edu/ron/math/341/10/
1. Once you open the quiz, you have 30 minutes to end time at the top of this sheet.	complete, please record your start time and
2. You may use the book or any of your class notes.	You must work alone.
3. If you use your own paper, please staple it to the quastapler, buy one. QUIZZES WITH UNSTAPLE	· · ·
4. After completing the quiz, sign the pledge below st to these rules.	cating on your honor that you have adhered
5. Your solutions must have enough details such that and determine HOW you came up with your solut	ı v

6. Relax and enjoy...

7. This bonus quiz is due on Monday November 1, at the beginning of class. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED.

Pledge: I, _______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.


1. Consider the system of ordinary differential equations

$$\frac{d\vec{x}}{dt} = A\vec{x} = \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix} \vec{x} \text{ where } \vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

(a) 1 point. Show that the matrix A has eigenvalues 0 and -1 and eigenvectors which are multiples of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$. Write down the 2-parameter general solution of the system $\frac{d\vec{x}}{dt} = A\vec{x}$.

(b) 2 points. Find the exact solution $\vec{x}(t)$ for each of the trajectories which go through the points $\mathbf{A}(1,1)$, $\mathbf{B}(0,-2)$ and $\mathbf{C}(4,0)$ at t=0.

(c) 2 points. On the figure below clearly indicate the trajectories for each of the solutions which start at $\mathbf{A}(1,1)$, $\mathbf{B}(0,-2)$ and $\mathbf{C}(4,0)$ ends up as $t\to\infty$. Label these endpoints \mathbf{A}' , \mathbf{B}' and \mathbf{C}' respectively.

