Test 2: Take-Home OR E.C.O.

Math 341 Fall 2010 © 2010 Ron Buckmire

Differential Equations
DUE: 5 pm, Wednesday December 1st

Name: \qquad

Directions:

FOR E.C.O. CREDIT you must do the entire test as a take-home exam where the rules are that you can talk about the Exam with any faculty member but NO OTHER STUDENT. You must submit the completed exam by the due date and receive a score of $\mathbf{9 0 \%}$ or better in order to get Extra Credit Opportunity credit. The educational goal of the exercise is for you to demonstrate mastery of the material that the Exam was on. NOTE: since this is a take-home exam, my standards for EXPLANATIONS and the LEVEL OF DETAIL in the work included will be higher than on the in-class exam.

FOR EXAM CREDIT. The rules of doing the exam are the same as for ECO credit (i.e. it is a take-home). The score on the take-home exam shall be averaged with your score on the in-class version of the exam. The educational goal of the exercise is for you to demonstrate mastery of the material that the Exam was on. NOTE: since this is a take-home exam, my standards for EXPLANATIONS and the LEVEL OF DETAIL in the work included will be higher than on the in-class exam. You can talk about the Exam with any faculty member but NO OTHER STUDENT.

Pledge: I, \qquad pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

CHECK ONE:

No.	Score	Maximum
1		15
2		15
3		20
Bonus		4
Total		$\mathbf{5 0}$

1. [15 points total.] Linear Systems of Differential Equations, Trace-Determinant Plane, Bifurcation. VISUAL \& ANALYTIC.
Consider $\frac{d \vec{x}}{d t}=A \vec{x}$ where $A=\left[\begin{array}{cc}\alpha & -\alpha / 2 \\ 1 & -1\end{array}\right]$ and α is a known real-valued parameter. Recall that the eigenvalues of the matrix A are given by $\lambda=\frac{T \pm \sqrt{T^{2}-4 D}}{2}$ where T is the trace of the matrix A and D is the determinant of matrix A.

1(a) [5 points]. Compute the trace T and determinant D of matrix A for all values of α. Show that the relationship between the trace T and determinant D is $2 D+T=-1$ regardless of the value of α.

1(b) [5 points]. Use your answer from (a) to sketch a graph in the trace-determinant plane depicting the relationship between the trace T and determinant D for the given matrix A as α changes. On the same axes, sketch the standard graph in the trace-determinant plane which separates the occurrence of real eigenvalues from complex eigenvalues for any matrix. [HINT: Label your graphs!]
$\mathbf{1 (c)}$ [5 points]. Does the qualitative nature of the phase portrait (and equilibrium at the origin) change as α varies? If so, give all the bifurcation values of α, classify the equilibrium point at the origin for values of α (greater than, less than and equal to the bifurcation value(s)) and provide reasonable sketches of the phase portrait(s)) in each case in the space below.
2. [15 points total.] Linearization, Hamiltonian function, Gradient function. ANALYTIC, VERBAL \& VISUAL.
Are the following statements TRUE or FALSE - put your answer in the box. To receive ANY credit, you must also give a brief, and correct, explanation in support of your answer! For example, if you think the answer is FALSE providing a counterexample for which the statement is NOT TRUE is best. If you think the answer is TRUE you should prove why you think the statement is always true. Your explanation of your answer is worth FOUR TIMES as much as the answer you put in the box. For Full Credit you must write a full sentence explaining the reason for your choice of TRUE or FALSE.

Consider the non-linear system

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-y+y^{3} \\
& \frac{d y}{d t}=x+\alpha y+x^{2}
\end{aligned}
$$

where α is a known real-valued parameter.
2(a) TRUE or FALSE? "A Hamiltonian function $H(x, y)$ for the given nonlinear system of ODEs exists."
\square

2(b) TRUE or FALSE? "A gradient function $G(x, y)$ for the nonlinear system of ODEs exists for some value of α."

2(c) TRUE or FALSE? "The origin of the phase portrait for this nonlinear system will look like a center (a series of concentric circles) for all values of α."
3. [20 points total.] Linear Systems of Differential Equations, Matrix Exponential, General Solution. ANALYTIC \& VERBAL.
Consider the initial value problem $\frac{d \vec{x}}{d t}=A \vec{x}, \vec{x}(0)=\overrightarrow{x_{0}}$ where $\vec{x}=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ and $\vec{x}_{0}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$.
Usually we write the general solution as $\vec{x}=c_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+c_{2} e^{\lambda_{2} t} \overrightarrow{v_{2}}$ where λ_{i} and $\overrightarrow{v_{i}}$ are eigenvalues and eigenvectors of matrix A. This is called the general eigenvector solution. However, the solution can also be written as $\vec{x}(t)=e^{A t} \vec{x}_{0}$, which we will call the matrix exponential solution.

The goal of this problem is to show that the general solution to the given initial value problem can be represented using either the matrix exponential solution or the general eigenvector solution.

Recall from Calculus that $\frac{d}{d t} e^{\square t}=\square e^{\square t}$ as long as $\frac{d}{d t} \square=0$.
Recall from Linear Algebra that if A is diagonalizable, then the matrix exponential $e^{A t}=S e^{\Lambda t} S^{-1}$ where S is an $n \times n$ matrix whose columns consist of the n eigenvectors $\vec{v}_{1}, \ldots \vec{v}_{n}$ of A, and Λ is an $n \times n$ diagonal matrix with the corresponding eigenvalues along the diagonal.

$$
e^{A t}=\left[\begin{array}{lllll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \ldots & \overrightarrow{v_{n}}
\end{array}\right]\left[\begin{array}{ccccc}
e^{\lambda_{1} t} & 0 & 0 & 0 & 0 \\
0 & e^{\lambda_{2} t} & 0 & 0 & 0 \\
0 & 0 & e^{\lambda_{3} t} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & e^{\lambda_{n} t}
\end{array}\right]\left[\begin{array}{llll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \ldots \\
\overrightarrow{v_{n}}
\end{array}\right]^{-1}
$$

NOTE: For this problem you can assume that A is a 2×2 diagonalizable matrix of the form $\left[\begin{array}{cc}0 & 1 \\ -q & -p\end{array}\right]$ (where p and q are known fixed numbers) and A has two eigenvalues λ_{1} and λ_{2} with associated eigenvectors $\vec{v}_{1}=\left[\begin{array}{c}1 \\ \lambda_{1}\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ \lambda_{2}\end{array}\right]$.

3(a) [3 points]. Show that the the general eigenvector solution satisfies the differential equation $\frac{d \vec{x}}{d t}=A \vec{x}$.

3(b) [3 points]. Show that in order for the general eigenvector solution to satisfy the given initial condition $\vec{x}(0)=\overrightarrow{x_{0}}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$, the linear system $\left[\begin{array}{cc}1 & 1 \\ \lambda_{1} & \lambda_{2}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ must be solved to find the unknown constants c_{1} and c_{2}. (HINT: What's a restriction involving λ_{1} and λ_{2} which must be satisfied?)

3(c) [6 points]. Show that the matrix exponential solution $\vec{x}(t)=e^{A t} \vec{x}_{0}$ satisfies the given initial value problem. [HINT: for a given solution to satisfy an initial value problem what must be true?]

3(d) [8 points]. Use your results from (a),(b) and (c) to show that the matrix exponential solution is identical to the general eigenvector solution for the given initial value problem $\frac{d \vec{x}}{d t}=A \vec{x}, \vec{x}(0)=\overrightarrow{x_{0}}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ where A has two eigenvalues λ_{1} and λ_{2} with associated eigenvectors $\vec{v}_{1}=\left[\begin{array}{c}1 \\ \lambda_{1}\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ \lambda_{2}\end{array}\right]$. (HINT: What's a restriction involving λ_{1} and λ_{2} which must be satisfied?) EXPLAIN YOUR ANSWER(S) and SHOW ALL YOUR WORK.

BONUS. [4 points]. Consider the special case from Question \#3 where $p=3$ and $q=2$ in matrix A. Find the (matrix exponential) solution to the initial value problem $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right] \vec{x}, \quad \vec{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and simplify it into the form $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$.
CHECK YOUR ANSWER!
HINT: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

