Differential Equations

Math 341 Fall 2009 ©2009 Ron Buckmire MWF 2:30-3:25pm Fowler 110 http://faculty.oxy.edu/ron/math/341/09/

Worksheet 19: Friday October 30

TITLE Linear Systems with Repeated Eigenvalues **CURRENT READING** Blanchard, 3.5

Homework Assignments due Friday October 24

Section 3.5: 3, 4, 9, 10, 17, 18. Section 3.6: 4, 5, 16, 33, 38.

SUMMARY

We'll continue to explore the various scenarios that occur with linear systems of ODEs. This time dealing with those that possess repeated eigenvalues. This will involve the introduction of a new concepts, the Generalized Eigenvector. We will also review some important concepts from Linear Algebra, such as the Cayley-Hamilton Theorem.

1. Repeated Eigenvalues

Given a system of linear ODEs with associated matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ the characteristic polynomial is $p(\lambda) = (a - \lambda)(d - \lambda) - bc = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0.$

Previously we showed that the condition for repeated eigenvalues was $(a - d)^2 = -4bc$. In this case there will be only one solution to the quadratic equation, i.e. repeated eigenvalues equal to $\lambda = \frac{(a + d)}{2}$.

When there are two eiegenvalues and eigenvectors the general solution to $\frac{d\vec{x}}{dt} = A\vec{x}$ is $\vec{x} = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2$ where $A\vec{v}_1 = \lambda_1 \vec{v}_1$ and $A\vec{v}_2 = \lambda_2 \vec{v}_2$, i.e \vec{v}_1 and \vec{v}_2 are eigenvectors corresponding to eigenvalues λ_1 and λ_2 .

The Easy Case

Q: What do we do if our one eigenvalue has two eigenvectors? (Is this even possible?) **A:** As long as we have two eigenvectors we can use the above formula for the general solution. In this case the problem is even simpler because if the eigenspace is 2-dimensional then every vector in \mathbb{R}^2 is an eigenvector so the easiest choice is $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and
$$\vec{v}_1 = \begin{bmatrix} 0\\1 \end{bmatrix}$$
. This situation is possible if the matrix has the form $\begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_1 \end{bmatrix}$

The Hard Case

Q: So what do we do if we only have one eigenvalue λ (and only one eigenvector \vec{v}), i.e. $\vec{x}_1(t) = e^{\lambda t} \vec{v}$?

A: We need to find another vector function $\vec{x}_2(t)$ that is linearly independent to $\vec{x}_1(t)$ at some point t.

The answer turns out to be $\vec{x}_2(t) = e^{\lambda t}(\vec{w} + t\vec{v})$ where $(A - \lambda \mathcal{I})\vec{w} = \vec{v}$. In this formula \vec{v} is an eigenvector of A and \vec{w} is a generalized eigenvector of rank 2.

DEFINITION: generalized eigenvector

An eigenvector \vec{w} associated with λ such that $(A - \lambda \mathcal{I})^r \vec{w} = \vec{0}$ but $(A - \lambda \mathcal{I})^{r-1} \vec{w} \neq \vec{0}$ is called a **generalized eigenvector of rank r**.

PROOF

Let's confirm that $\vec{x}(t) = e^{\lambda t}(\vec{w} + t\vec{v})$ is another solution to the ODE.

$$\begin{aligned} \frac{d\vec{x}}{dt} &= A\vec{x} \\ \frac{d[e^{\lambda t}(\vec{w}+t\vec{v})]}{dt} &= A[e^{\lambda t}(\vec{w}+t\vec{v})] \\ \lambda e^{\lambda t}(\vec{w}+t\vec{v})] + e^{\lambda t}\vec{v} &= e^{\lambda t}[A\vec{w}+A\vec{v}t] \\ e^{\lambda t}(\lambda \vec{w}+\vec{v}) + te^{\lambda t}\lambda \vec{v} &= e^{\lambda t}(A\vec{w}) + (A\vec{v})te^{\lambda t} \end{aligned}$$

Equating the $e^{\lambda t}$ terms produces the equation $\lambda \vec{w} + \vec{v} = A\vec{w}$, i.e. $\vec{v} = A\vec{w} - \lambda \vec{w} = (A - \lambda \mathcal{I})\vec{w}$ Equating the $te^{\lambda t}$ terms produces the equation $\lambda \vec{v} = A\vec{v}$

So, if we choose \vec{v} and \vec{w} to have these properties then $\vec{x}(t) = e^{\lambda t}(\vec{w} + t\vec{v})$ will solve $\frac{d\vec{x}}{dt} = A\vec{x}$. Yay! The general solution will be $\vec{x} = c_1 e^{\lambda t} \vec{v} + c_2 e^{\lambda t} (\vec{w} + t\vec{v})$.

RECALL

The Cayley-Hamilton Theorem states that a $n \times n$ matrix A satisfies its own characteristic polynomial. In other words, given $p(\lambda) = \det(A - \lambda \mathcal{I}) = 0$, $p(A) = \mathcal{O}$ where \mathcal{I} is the $n \times n$ identity matrix and \mathcal{O} is the $n \times n$ zero matrix.

Since we know there is only one (repeated) eigenvalue λ , we know that the characteristic polynomial has the form $p(x) = (x - \lambda)^2 = 0$ which means that $p(A) = (A - \lambda I)^2 = O$.

 $\begin{array}{rcl} (A - \lambda \mathcal{I})^2 &=& \mathcal{O} & (\text{From the Cayley-Hamilton Theorem}) \\ (A - \lambda \mathcal{I})^2 \vec{w} &=& \mathcal{O} \vec{w} & (\text{Multiply both sides by an unknown vector } \vec{w}) \\ (A - \lambda \mathcal{I})[(A - \lambda \mathcal{I}) \vec{w}] &=& \vec{0} & (\text{Group terms and name the bracketed term } \vec{v}) \\ (A - \lambda \mathcal{I}) \vec{v} &=& \vec{0} & (\text{Either } \vec{v} = \vec{0} \text{ or it is an eigenvector of } A \text{ associated with } \lambda) \end{array}$

RECALL

The definition of an eigenvector is a vector \vec{x} which lies in the nullspace of $A - \lambda \mathcal{I}$ (also known as the eigenspace E_{λ}), i.e. it solves the equation $(A - \lambda \mathcal{I})\vec{x} = \vec{0}$.

So from the Cayley-Hamilton Theorem we know that the vector $(A - \lambda \mathcal{I})\vec{w}$ lies in the onedimensional eigenspace E_{λ} , i.e. it must be a scalar multiple of the non-zero eigenvector \vec{v} .

We still do not know the exact value of vector \vec{w} but we can use the above information to compute it by solving the linear system $(A - \lambda \mathcal{I})\vec{w} = \vec{v}$.

Exercise Given $A = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix}$ find the eigenvalue(s) and eigenvector(s) of A and confirm that this matrix satisfies the Cayley-Hamilton Theorem. Math~341

$$\begin{array}{c} \underline{\text{EXAMPLE}} \\ \text{We'll show that} \quad \frac{d\vec{x}}{dt} = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix} \vec{x} \text{ has the general solution } \vec{x}(t) = c_1 e^{-2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{-2t} \left(\begin{bmatrix} 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right).$$