Differential Equations

Math 341 Fall 2009 ©2009 Ron Buckmire $MWF~2:30\text{-}3:25pm~Fowler~110\\ \texttt{http://faculty.oxy.edu/ron/math/341/09/}$

Worksheet 16: Friday October 16

TITLE Straight Line Solutions

CURRENT READING Blanchard, 3.2

Homework Assignments due Friday October 30

Section 3.1: 7, 8, 14, 15.

Section 3.2: 6, 11, 15, 16, 18.

Section 3.3: 3, 4, 7, 8.

Section 3.4: 1, 2, 3, 4.

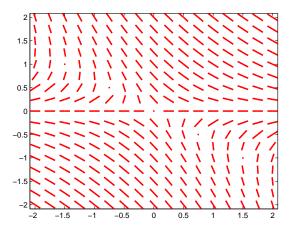
SUMMARY

Eigenvalues and eigenvectors return and are important in the case where Linear Systems of ODEs have solutions that look like straight lines.

1. The Significance of Eigenvectors and Eigenvalues

Recall the solutions $\vec{x}_1(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$ and $\vec{x}_2(t) = \begin{bmatrix} -e^{-4t} \\ 2e^{-4t} \end{bmatrix}$ to the ODE $\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & 3 \\ 0 & -4 \end{bmatrix} \vec{x}$ from Worksheet #15.

Notice that
$$\vec{x}_1(t) = \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{2t}$$
 and $\vec{x}_2(t) = \begin{bmatrix} -e^{-4t} \\ 2e^{-4t} \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{-4t}$.


Question

Do you notice anything interesting about the vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$? Any relationship to the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & -4 \end{bmatrix}$? What happens if you multiply each vector by A?

Answer

The vectors in question are ____

Consider the slope field for the ODE $\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & 3 \\ 0 & -4 \end{bmatrix} \vec{x}$:

It turns out that the general solution to $\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & 3 \\ 0 & -4 \end{bmatrix} \vec{x}$ can be written as $\vec{x} = c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t) = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{-4t}$.

Exercise

On the above slope field, draw in the solutions $\vec{x}_1(t)$ and $\vec{x}_2(t)$. What happens as $t \to \infty$? What about as $t \to -\infty$?

Draw in the nullclines also. Is there any general relationship between the straight-line solutions and the nullclines?

EXAMPLE

Consider the system $\frac{d\vec{x}}{dt} = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} \vec{x}$. Find the eigenvalues λ and eigenvectors \vec{v} of $\begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$.

Show that the general solution can be written as $\vec{x} = c_1 \vec{v_1} e^{\lambda_1 t} + c_1 \vec{v_2} e^{\lambda_2 t}$ and confirm that it is actually a solution of $\vec{x}' = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix} \vec{x}$.

2. General Solution To Homogeneous Linear Systems

THEOREM

The general solution $\vec{x}(t)$ on the interval $(-\infty, \infty)$ to a homogeneous system of linear DEs $\frac{d\vec{x}(t)}{dt} = A(t)\vec{x}(t)$ can be written as $\vec{x} = c_1\vec{v}_1e^{\lambda_1t} + c_2\vec{v}_2e^{\lambda_2t} + c_3\vec{v}_3e^{\lambda_3t} + \ldots + c_n\vec{v}_ne^{\lambda_nt}$ where $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n$ and $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_n$ are the eigenvalues and corresponding eigenvectors of the matrix A.

3. Phase Portraits With Straight Line Solutions

Exercise

Solve
$$\frac{dx}{dt} = 2x + 2y$$
, $\frac{dy}{dt} = x + 3y$.

GroupWork

Use HPGSystemSolver to sketch the phase portrait of the linear system $\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \vec{x}$ you solved above, in the space below.