Class 6: Wednesday September 16

TITLE Phase Lines and Equilibria
CURRENT READING Blanchard, 1.6

Homework Assignments due Friday September 18

Section 1.4: 5, 6, 13, 15
Section 1.5: 2, 3, 12, 14, 15.
Section 1.6: 2, 7, 8, 19, 20, 30, 31, 41

SUMMARY

We will continue our qualitative analysis of differential equations by learning how to use phase lines and the classification of equilibrium points of autonomous ODEs.

DEFINITION: critical point

A critical point of an autonomous $\mathrm{DE} y^{\prime}=f(y)$ is a real number c such that $f(c)=0$.
Another name for critical point is stationary point or equilibrium point. If c is a critical point of an autonomous DE , then $y(x)=c$ is a constant solution of the DE.

DEFINITION: phase portrait

A one dimensional phase portrait of an autonomous $\mathrm{DE} y^{\prime}=f(y)$ is a diagram which indicates the values of the dependent variable for which y is increasing, decreasing or constant. Sometimes the vertical version of the phase portrait is called a phase line.

1. Algorithm For Drawing A Phase Line

- Draw a vertical line
- Find the equilibrium points (i.e. values such that $f(y)=0$) and mark them on the line
- Find intervals for which $f(y)>0$ and mark them with up arrows \uparrow or \wedge
- Find intervals for which $f(y)<0$ and mark them with down arrows \downarrow or \vee

The textbook likes to have you think of the phase line as a rope with people moving up and down the rope in the directions the arrows are pointing to visualize solutions dynamically.

EXAMPLE

Consider the autonomous differential equation $\frac{d y}{d t}=y(a-b y)$ where $a>0$ and $b>0$. 1 Find the critical points of the DE.

2 Determine the values of y for which $y(t)$ is increasing and decreasing

3 Draw the phase line for this DE

2. Obtaining Solution Information from Phase Lines

Consider $y^{\prime}=f(y)$ where $f(y)$ is a continuously differentiable function and $y(t)$ is a solution to an autonomous ordinary differential equation. The following conclusions can be made

- If $f(y(0))=0$ then $y(t)=y(0)$ for all t and $y(0)$ is an equilibrium point
- If $f(y(0))>0$ then $y(t)$ is increasing for all t and either $y(t) \rightarrow \infty$ as t increases or $y(t)$ tends to the first equilibrium point larger than $y(0)$
- If $f(y(0))<0$ then $y(t)$ is decreasing for all t and either $y(t) \rightarrow-\infty$ as t increases or $y(t)$ tends to the first equilibrium point smaller than $y(0)$

Exercise

Draw the phase line in the space on the left for the corresponding ODE $y^{\prime}=f(y)$ where $f(y)$ versus y is graphed below to the right.

Draw graphs of various particular solutions starting at $y(0)=-1, y(0)=0, y(0)=1, y(0)=2$ and $y(0)=3$ in the $t y$-plane given below.

3. Classifying Equilibrium Points: Sink, Source or Node

A critical value c is a point where $y^{\prime}=f(c)=0$ splits an interval into two different regions. So there are four possible scenarios for the behavior near $c:(+, 0,+),(+, 0,-),(-, 0,+)$ and $(-, 0,-)$.

EXAMPLE

Draw the phase line for each of these cases and then classify the corresponding critical points as asymptotically stable (i.e. attractor or sink), unstable (repellor or source) or semi-stable node.

Exercise

Draw graphs of the autonomous function $f(y)$ near equilibrium points classified as a sink, source or node corresponding to the phase line in the example above

THEOREM: Linearization Theorem
IF y_{0} is an equilibrium point of the autonomous differential equation $y^{\prime}=f(y)$ where $f(y)$ is a continuously differentiable function, THEN

- If $f^{\prime}\left(y_{0}\right)<0$ then y_{0} is a sink.
- If $f^{\prime}\left(y_{0}\right)>0$ then y_{0} is a source.
- If $f^{\prime}\left(y_{0}\right)=0$ then more information is needed to classify the equilibrium point.

EXAMPLE

What can you say about the equilibrium point of the ODE $y^{\prime}=y\left(\cos \left(y^{5}+2 y\right)-27 \pi y^{4}\right)$ at $y=0$?

Exercise

Inspired by Blanchard, Devaney \& Hall, \#43, page 95.
Suppose $y^{\prime}=f(y)$ and $y=y_{0}$ is an equilibrium point and
(a) $f^{\prime}\left(y_{0}\right)=0, f^{\prime \prime}\left(y_{0}\right)>0$: Is y_{0} a sink, source or node? EXPLAIN.
(b) $f^{\prime}\left(y_{0}\right)=0, f^{\prime \prime}\left(y_{0}\right)<0$: Is y_{0} a sink, source or node? EXPLAIN.
(c) $f^{\prime}\left(y_{0}\right)=0, f^{\prime \prime}\left(y_{0}\right)=0$ and $f^{\prime \prime \prime}\left(y_{0}\right)>0$: Is y_{0} a sink, source or node? EXPLAIN.
(d) $f^{\prime}\left(y_{0}\right)=0, f^{\prime \prime}\left(y_{0}\right)=0$ and $f^{\prime \prime \prime}\left(y_{0}\right)<0$: Is y_{0} a sink, source or node? EXPLAIN.

