Quiz $\mathbf{5}$

Name: _____

Time Begun:	
Time Ended:	

Topic : Bifurcations in Systems of Differential Equations

The idea behind this quiz is to provide you with an opportunity to think about how bifurcations can occur in linear systems of DEs.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/341/10/
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday November 15, 5pm under office my door. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

DIFFERENTIAL EQUATIONS

Friday November 12 Prof. Ron Buckmire Math 341 Fall 2010

SHOW ALL YOUR WORK

1. Consider the linear system of ordinary differential equations with a real-valued parameter *a*

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & a \\ 2 & 0 \end{bmatrix} \vec{x} \text{ where } \vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Let's describe how the phase portrait changes as a varies from $-\infty$ to $+\infty$. (a) 3 points. Compute all the eigenvalues and eigenvectors in order to sketch the phase portrait when a = -3/2. Describe the stationary point at the origin when $a = a_B$.

(b) 3 points. Compute all the eigenvalues and eigenvectors in order to sketch the phase portrait when a = 1. Describe the stationary point at the origin.

(c) 4 points. For what value of a does the system change its nature (i.e. bifurcate)? Call this value a_B and compute the eigenvalues and eigenvectors in order to sketch the phase portrait for $a = a_B$. Describe the stationary point at the origin.