
Quiz 3	Differential Equations
Name:	
Time Begun: Time Ended:	Friday October 30 Prof. Ron Buckmire
Topic: Linear Systems of Equations	
The idea behind this quiz is to provide you with an opp curves of linear systems in 2-D.	portunity to illustrate your understanding of solution
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to	faculty.oxy.edu/ron/math/341/09/
1. Once you open the quiz, you have 30 minute end time at the top of this sheet.	es to complete, please record your start time and
2. You may use the book or any of your class n	otes. You must work alone.
0 11 /1 1	the quiz before coming to class. If you don't have APLED SHEETS WILL NOT BE GRADED.
4. After completing the quiz, sign the pledge be to these rules.	low stating on your honor that you have adhered
5. Your solutions must have enough details such and determine HOW you came up with your	h that an impartial observer can read your work solution.
6. Relax and enjoy	
7. This quiz is due on Monday Novemb QUIZZES WILL BE ACCEPTED.	er 2, in class. NO LATE OR UNSTAPLED

Pledge: I,________, pledge my honor as a human being and Occidental student,

that I have followed all the rules above to the letter and in spirit.

1. Consider the slope field for the given system

$$\begin{array}{rcl} \frac{dx}{dt} & = & -2x + \frac{1}{2}y \\ \frac{dy}{dt} & = & -y \end{array}$$

- (a) 2 points. Classify the equilibrium point at the origin. (In other words identify its stability and give it one of the standard names.)
- (b) 4 points. Indicate the trajectories for solutions which start at the initial conditions A = (2, 1), B = (1, -2), C = (-2, 2) and D = (-2, 0). (USE ARROWS!) HINT: Find the straight line solutions and draw those in on the axes as well.
- (c) 4 points. In the space, sketch graphs of x(t) and y(t) on the same axis for each of the given four initial conditions. (Therefore you should have a total of four pairs of axes, with 2 curves on each.) Clearly indicate what happens as $t \to \infty$ for each solution curve.