Differential Equations

Math 341 Spring 2005
(C)2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 24: Wednesday March 30

TITLE The Laplace Transform
CURRENT READING Zill 7.1

Homework Set \#10

Zill, Section 7.1: 4*, 9*, 11*, 20* EXTRA CREDIT 41
Zill, Section 7.2: $2^{*}, 7^{*}, 11^{*}, 25^{*}$, 41* EXTRA CREDIT 42

SUMMARY

We introduce a new kind of operator, an integral operator, called the Laplace Transform, which can be used to solve differential equations.

1. Introducing The Laplace Transform

DEFINITION: Integral Transform

If a function $f(t)$ is defined on $[0, \infty)$ then we can define an integral transform to be the improper integral $F(s)=\int_{0}^{\infty} K(s, t) f(t) d t$. If the improper integral converges then we say that $F(s)$ is the integral transform of $f(t)$. The function $K(s, t)$ is called the kernel of the transform. When $K(s, t)=e^{-s t}$ the transform is called the Laplace Transform.

DEFINITION: Laplace Transform

Let $f(t)$ be a function defined on $t \geq 0$. The Laplace Transform of $f(t)$ is defined as

$$
F(s)=\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

(Note the use of capital letters for the transformed function and the lower-case letter for the input function.)
EXAMPLE Let's show that $\mathcal{L}[1]=\frac{1}{s}, s>0$

Exercise

Compute $\mathcal{L}[t]$.

2. Properties of The Laplace Transform

\mathcal{L} is a linear operator, in other words $\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[g(t)]$
EXAMPLE Let's show that $\mathcal{L}[\sin (k t)]=\frac{k}{s^{2}+k^{2}}, s>0$

Important Laplace Transforms	
$f(t)$	$F(s)=\mathcal{L}[f(t)]$
1	$\frac{1}{s}$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$\cos (k t)$	$\frac{s}{s^{2}+k^{2}}$
$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}$
$\cosh (k t)$	$\frac{s}{s^{2}-k^{2}}$

Q: Does every function have a Laplace Transform? A: Hell, no! (i.e. $t^{-1}, e^{t^{2}}$ etc

DEFINITION: exponential order

A function f is said to be of exponential order c if there exist constants $c, M>0, T>0$ such that $|f(t)| \leq M e^{c t}$ for all $t>T$.
Basically this is saying that in order for $f(t)$ to have a Laplace Transform then in a race between $|f(t)|$ and $e^{c t}$ as $t \rightarrow \infty$ then $e^{c t}$ must approach its limit first, i.e. $\lim _{t \rightarrow \infty} \frac{f(t)}{e^{c t}}=0$.

THEOREM

If f is piecewise continuous on $[0, \infty)$ and of exponential order c, then $F(s)=\mathcal{L}[f(t)]$ exists for $s>c$ and $\lim _{s \rightarrow \infty} F(s)=0$
Exercise Find the Laplace Transform of the piecewise function $f(t)= \begin{cases}0, & 0 \leq t<3 \\ 2, & t \geq 3\end{cases}$

