Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 24: Wednesday March 30

TITLE The Laplace Transform **CURRENT READING** Zill 7.1

Homework Set #10 Zill, Section 7.1: 4*, 9*, 11*, 20* EXTRA CREDIT 41 Zill, Section 7.2: 2*, 7*, 11*, 25*, 41* EXTRA CREDIT 42

SUMMARY

We introduce a new kind of operator, an integral operator, called the Laplace Transform, which can be used to solve differential equations.

1. Introducing The Laplace Transform

DEFINITION: Integral Transform

If a function f(t) is defined on $[0, \infty)$ then we can define an integral transform to be the improper integral $F(s) = \int_0^\infty K(s, t)f(t) dt$. If the improper integral converges then we say that F(s) is the integral transform of f(t). The function K(s, t) is called the **kernel** of the transform. When $K(s, t) = e^{-st}$ the transform is called **the Laplace Transform**.

DEFINITION: Laplace Transform

Let f(t) be a function defined on $t \ge 0$. The Laplace Transform of f(t) is defined as

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

(Note the use of capital letters for the transformed function and the lower-case letter for the input function.)

EXAMPLE Let's show that $\mathcal{L}[1] = \frac{1}{s}, s > 0$

Exercise

Compute $\mathcal{L}[t]$.

2. Properties of The Laplace Transform

 \mathcal{L} is a linear operator, in other words $\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)]$

EXAMPLE Let's show that $\mathcal{L}[\sin(kt)] = \frac{k}{s^2 + k^2}, s > 0$

Important Laplace Transforms	
f(t)	$F(s) = \mathcal{L}[f(t)]$
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\sin(kt)$	$\frac{k}{s^2 + k^2}$
$\cos(kt)$	$\frac{s}{s^2 + k^2}$
$\sinh(kt)$	$\frac{k}{s^2 - k^2}$
$\cosh(kt)$	$\frac{s}{s^2 - k^2}$

Q: Does every function have a Laplace Transform? **A:** Hell, no! (i.e. t^{-1}, e^{t^2} etc

DEFINITION: exponential order

A function f is said to be of **exponential order** c if there exist constants c, M > 0, T > 0 such that $|f(t)| \leq Me^{ct}$ for all t > T.

Basically this is saying that in order for f(t) to have a Laplace Transform then in a race between |f(t)| and e^{ct} as $t \to \infty$ then e^{ct} must approach its limit first, i.e. $\lim_{t\to\infty} \frac{f(t)}{e^{ct}} = 0$.

THEOREM

If f is piecewise continuous on $[0, \infty)$ and of exponential order c, then $F(s) = \mathcal{L}[f(t)]$ exists for s > c and $\lim_{s \to \infty} F(s) = 0$

Exercise Find the Laplace Transform of the piecewise function $f(t) = \begin{cases} 0, & 0 \le t < 3\\ 2, & t \ge 3 \end{cases}$