Complex Analysis

Class 30 (Wednesday April 8)

SUMMARY Using Laurent Series to Compute Residues
CURRENT READING Brown \& Curchill pages 154-158
NEXT READING Brown \& Curchill pages 210-219

Laurent Series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}, \quad R_{1}<\left|z-z_{0}\right|<R_{2}
$$

This formula for a Laurent series is also sometimes written as

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \quad \text { where } c_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z, \quad n=0, \pm 1, \pm 2, \ldots
$$

In practice, one usually computes a Laurent series by comparing the function you have to one of the "famous functions" whose Maclaurin series you have memorized.
GROUPWORK

1. Write down the Laurent series for $z^{2} \sin \left(1 / z^{2}\right)$ in the domain $0<|z|<\infty$
2. What is the value of $\operatorname{Res}\left(z^{2} \sin \left(1 / z^{2}\right), 0\right)$?
3. Evaluate $\oint_{|z|=1} z^{2} \sin \left(1 / z^{2}\right) d z$
4. Write down two different Laurent series for $f(z)=\frac{1}{z\left(z^{2}+1\right)}$ and specify the domain in which your series are valid.
5. Evaluate $\oint_{|z|=2} \frac{1}{z\left(z^{2}+1\right)} d z$ using whichever method you prefer.
