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SUMMARY
We shall be introduced to Laurent Series and learn how to use them to classify different various
kinds of singularities (locations where complex functions are no longer analytic).

There are basically three types of singularities (points where f(z) is not analytic) in the com-
plex plane. They are called removable singularities, isolated singularities and branch
singularities.

Isolated Singularity
An isolated singularity of a function f(z) is a point z0 such that f(z) is analytic on the punc-
tured disc 0 < |z − z0| < r but is undefined at z = z0. We usually call isolated singularities

poles. An example is z = i for the function f(z) =
z

z − i
.

Removable Singularity
A removable singularity is a point z0 where the function f(z0) appears to be undefined but if
we assign f(z0) the value w0 with the knowledge that lim

z→z0
f(z) = w0 then we can say that we

have “removed” the singularity. An example would be the point z = 0 for f(z) = sin(z)/z.
Branch Singularity
A branch singularity is a point z0 through which all possible branch cuts of a multi-valued func-
tion can be drawn to produce a single-valued function. An example of such a point would be
the point z = 0 for Log (z).

Essential Singularity. The canonical example of an essential singularity is z = 0 for the
function f(z) = e1/z. The easiest way to define an essential singularity of a function involves
Laurent Series (see the Table below reproduced from Zill & Shanahan, page 289).

1



Complex Analysis Worksheet 24 Math 312 Spring 2016

Laurent series
In fact, the best way to identify an essential singularity z0 of a function f(z) (and an alternative
way to compute residues) is to look at the series representation of the function f(z) about
the point z0
That is,

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

, R1 < |z − z0| < R2

This formula for a Laurent series is sometimes written as

f(z) =
∞∑

n=−∞

cn(z − z0)n where cn =
1

2πi

∮
C

f(z)

(z − z0)n+1
dz, n = ±1,±2, . . .

This first part of this series should look somewhat familiar from your experience with real
functions, since the expression is clearly a Taylor series if bn = 0 for all n. This first part
of the series representation is known as the analytic part of the function. The second part
(with the negative exponents) is called the principal part of the function. However if an and
bn are not all identically zero this type of series is called a Laurent series and converges to the
function f(z) in the annular region R1 < |z − z0| < R2.

EXAMPLE
Let’s show why expressing the function f(z) in terms of a Laurent Series is useful by proving
that the value of the Res(f ; z0) is exactly equal to b1 (or c−1), that is, the coefficient of the

1

z − z0
term. We can do this by integrating the Laurent series term by term on some closed

contour C and using the CIF.

Our goal is to see how series representations of functions allows us to compute integrals of
functions easily by computing residues, and other means. But first we need to update our
knowledge of sequences and series of real variables to the same objects using complex variables.

2



Complex Analysis Worksheet 24 Math 312 Spring 2016

Review of Sequences and Series
Recall that an infinite sequence {zn} converges to z if for each ε > 0 there exists an N such
that if n > N then |zn − z| < ε
The sequence z1, z2, z3, . . . , zn, . . . converges to the value z = x + iy if and only if the sequence
x1, x2, x3, . . . converges to x and y1, y2, y3, . . . converges to y.
In other words lim

n→∞
zn = z ⇔ lim

n→∞
xn = x and lim

n→∞
yn = y

An infinite series
∞∑
n=1

zn = z1 + z2 + z3 + · · ·+ zn + · · · converges to S if the sequence SN of

partial sums where SN = z1 + z2 + z3 + z4 + · · ·+ zN (N = 1, 2, 3, . . .) converges to S. Then

we say that
∞∑
n=1

zn = S.

As with sequences, series can be split up into real and imaginary parts. Suppose zn = xn + iyn

and
∞∑
n=1

zn = Z,
∞∑
n=1

xn = X and Y =
∞∑
n=1

yn then Z = X + iY .

Taylor series
Suppose a function f is analytic throughout an open disk |z − z0| < R0 centered at z0 with
radius R0. Then at each point z in this disk f(z) has the series representation

f(z) =
∞∑
n=0

an(z − z0)n where an =
f (n)(z0)

n!
for (n = 0, 1, 2, . . .)

In other words the function f(z) can be represented exactly by the infinite series in the disk
|z − z0| < R
When z0 = 0 the series is known as a Maclaurin series.
Here are some examples of well known Maclaurin series you should know.

ez = 1 + z +
z2

2!
+
z3

3!
+ . . . =

∞∑
k=0

zk

k!
|z| <∞

sin(z) = z − z3

3!
+
z5

5!
− . . . =

∞∑
k=0

(−1)k+1z2k+1

(2k + 1)!
|z| <∞

cos(z) = 1− z2

2!
+
z4

4!
− . . . =

∞∑
k=0

(−1)k+1z2k

(2k)!
|z| <∞

sinh(z) = z +
z3

3!
+
z5

5!
+ . . . =

∞∑
k=0

z2k+1

(2k + 1)!
|z| <∞

cosh(z) = 1 +
z2

2!
+
z4

4!
+ . . . =

∞∑
k=0

z2k

(2k)!
|z| <∞

1

1− z
= 1 + z + z2 + z3 + . . . =

∞∑
k=0

zk |z| < 1

ln(1 + z) = z − z2

2
+
z3

3
+ . . . =

∞∑
k=1

zk

k
|z| < 1

(1 + z)p = 1 + pz +
p(p− 1)z2

2!
+ . . .

p(p− 1) . . . (p− n+ 1)

n!
. . . |z| < 1

tan(z) = z +
z3

3
+

2z5

15
+ . . . |z| < π
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EXAMPLE

1. Consider the function f(z) =
sin(z)

z4
. Write down the Laurent Series for this function and

use this expansion to obtain Res(f ; 0). Classify the singularity at z = 0.

2. Confirm your value of Res

(
sin z

z4
; 0

)
by direct computation (use the Residue formula).

3. Evaluate

∮
|z|=2

sin(z)

z4
dz

Groupwork
1. Write down the Laurent series for f(z) = e1/z in the region 0 < |z| <∞.

2. What is the value of Res(e1/z, 0)?

3. Classify the singularity at z = 0.

4. Evaluate

∮
|z|=2

e1/z dz

4


