CHAPTER 3 Analytic Functions

EXER&QSES 3.1 Answers to selected odd-numbered problems begin on page ANS-10.

3.1.1 Limits

Tn Problems 1-8, use Theorem 3.1.1 and the properties of real limits on page 103 to compute
the given complex lirnit.”
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Tn Problems 9-16, use Theorem 3.1.2 and the basic limits (15) and (16) to compute the given
complex Lmit.
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17. Consider the limit lim Re(z) .
=0 ]In(z)

(a) What value does the limit approach as z approaches 0 along the line y=x7
(b) What value does the limit approach as z approaches 0 along the imaginary axis?
' . Re(2)
(c) Based on your answers for (a) and (b), what can you say about —1
2—0 Im(z)

18. Consider the Limit im (|z] + iArg (i2)):
Fand] B

(a) What value does the limit approach as z approaches i along the unit circle |z = 1in
the first quadrant?

(b) What value does the limit approach as z approaches i along the unit circle |z| = 1in
the second quadrant?

(¢) Based on your answers for (a) and (b), what can you say about lim (|z] + iATg Gz)?
N >l
Z 2
19. Consider the limit 1111(1) (:) .
= Z

(a) What value does the limit approach as z approaches 0 along the real axis?

(b) What value does the limit approach as z approaches 0 along the imaginary axis?
2
(¢) Do the answers from (a) and (b) imply that 1111(1) (z:> exists? Explain.
= Z
(d) What value does the limit approach as z approaches 0 along the line y = x7

2
(e) What can you say about 11116 (i) ?
= z




3.1 Limits and Continuity 119

) oy?  xr—y?
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(a) What value does the limit approach as 2 approaches 0 along the line y = x?

(b) What value does the limit approach as 2 approaches 0 along the line y = —x1?

2 2
(c) Do the answers from (a) and (b) imply that hrr(x) ( Y
z—>

2=y .
= -—= exists? Explain.
x y

(d) What value does the limit approach as 2 approaches 0 along the line y = 2x?

292 X G
(e) What can you say about lim | — — N
72—0 x2 y2

Problems 21-26 involve concepts of infinite limits and limits at infinity discussed in (i) of the
Remarks. In Problems 71-26, use (21) or (22), Theorem 3.1.2, and the basic limits (15) and

(16) to compute the given complex limit.
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3.1.2 Continuity
Tn Problems 27-34, show that the function f is continuous at the given point.
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In Problems 35-40, show that the function f 18 discontinuous at the given point.
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37. f(2)= Arg(z), z=—1 38. f(z)':: Arg(iz); 20 =1
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39.

In Problems 41-44, use Theorem 3.1.3 to determine the largest region in the complex plag
on which the function /' is continuous;
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Use Theorem 3.1.1 to prove:
(@) limc= ¢, Where ¢ is a constant. (b) lim 7 = 20.
=70 Eand)

Use Theorem 3.1.1 to show that lim 7 — Zo.

=z
Use Theorem 3.1.2 and Problem 46 to show that
(a) Zl_i)rg Re(z) = Re(zp).

(b) zlirg Im(z) = Im(z).

(©) zlinzlo Iz] = |zo.

Use Theorem 3.1.1 to prove part (i) of Theorem 3.1.2.

The following is an epsilon-delta proof that Z]ilg Z = z9. Fill in the Imissing parts.

Proof By Definition 3.1.1, Iim 2 = zo if for every ¢ > ( there isaé > 0such that

=20
| | < & whenever 0 <|l—_| <s. Setting § = __ will ensure that the
Previous statement is true, :

The following is an epsilon-delta proof that lim 7 = 7,. Provide the missing Justifications

=27
in the proof.

Proof By Definition 3.1.1, lim Z = Zp if for every € > O thereis a § > ¢ such

=2z
that | | < & whenever 0 < | | < 6 By properties of complex modulus
and conjugation, |z — 20l = ]z —zO’ = | |. Therefore, if 0 < lz~2z0] < 6 and
= »then |7 — 7| < .

In this problem we will develop an epsilon-delta proof that
lim ((1- Dz+20) =242,

Z= 144
(a) Write down the epsilon-delta definition (Definition 3.1.1) of hﬂ 0 -9z + 2i] =
> 1
2+ 2i.

(b) Factor out (1 — i) from the inequality involving ¢ (from part (a)) and simplify. Now
Tewrite this inequality in the form |z — (1 + )| < .

(é) Based on your work from part (b), what should § be set eqﬁal to?

3.2

Differe

(d) Write an epsilon-delta proof that lim [Q-iHz+ 2] =24 2;.

=14

272 —3iz 42
In this problem we wilj develop an epsilon-delta proof that Iu? Z\ZZH =5i.
=2 =2

222 —3iz 42
(2) Write down the epsilon-delta definition (Definition 3.1.1 of lim Z\;” =5
=2 — 2




