Answers to selected odd-numbered problems begin on page ANS-10. EXERCISES 3.1

3.1.1 Limits

In Problems 1-8, use Theorem 3.1.1 and the properties of real limits on page 103 to compute the given complex limit.

1.
$$\lim_{z \to 2i} \left(z^2 - \bar{z} \right)$$

$$2. \lim_{z \to 1+i} \frac{z - \bar{z}}{z + \bar{z}}$$

$$3. \lim_{z\to 1-i} \left(|z|^2 - i\,\overline{z}\right)$$

4.
$$\lim_{z \to 3i} \frac{\operatorname{Im}(z^2)}{z + \operatorname{Re}(z)}$$

5.
$$\lim_{z\to\pi i}e^z$$

6.
$$\lim_{z \to 0} \frac{z^2 + \overline{z}^2}{\text{Re}(z) + \text{Im}(z)}$$

7.
$$\lim_{z\to 0}\frac{e^z-e^{\overline{z}}}{\mathrm{Im}(z)}$$

8.
$$\lim_{z \to 1+i} \left(\log_e |x^2 + y^2| + i \arctan \frac{y}{x} \right)$$

In Problems 9–16, use Theorem 3.1.2 and the basic limits (15) and (16) to compute the given complex limit.

9.
$$\lim_{z \to 2-i} (z^2 - z)$$

10.
$$\lim_{z \to i} (z^5 - z^2 + z)$$

$$11. \ \lim_{z \to e^{i\pi/4}} \left(z + \frac{1}{z} \right)$$

12.
$$\lim_{z \to 1+i} \frac{z^2+1}{z^2-1}$$

13.
$$\lim_{z \to -i} \frac{z^4 - 1}{z + i}$$

14.
$$\lim_{z \to 2+i} \frac{z^2 - (2+i)^2}{z - (2+i)}$$

15.
$$\lim_{z \to z_0} \frac{(az+b) - (az_0 + b)}{z - z_0}$$

16.
$$\lim_{z \to -3 + i\sqrt{2}} \frac{z + 3 - i\sqrt{2}}{z^2 + 6z + 11}$$

17. Consider the limit $\lim_{z \to 0} \frac{\text{Re}(z)}{\text{Im}(z)}$

- (a) What value does the limit approach as z approaches 0 along the line y = x?
- (b) What value does the limit approach as z approaches 0 along the imaginary axis?
- (c) Based on your answers for (a) and (b), what can you say about $\lim_{z\to 0} \frac{\text{Re}(z)}{\text{Im}(z)}$?

18. Consider the limit $\lim_{z \to i} (|z| + i \operatorname{Arg}(iz))$.

- (a) What value does the limit approach as z approaches i along the unit circle |z| = 1 in the first quadrant?
- What value does the limit approach as z approaches i along the unit circle |z|=1 in the second quadrant?
- (c) Based on your answers for (a) and (b), what can you say about $\lim_{z \to i} (|z| + i \operatorname{Arg}(iz))$?

19. Consider the limit $\lim_{z \to 0} \left(\frac{z}{\bar{z}}\right)^2$.

- (a) What value does the limit approach as z approaches 0 along the real axis?
- (b) What value does the limit approach as z approaches 0 along the imaginary axis?
- (c) Do the answers from (a) and (b) imply that $\lim_{z\to 0} \left(\frac{z}{\bar{z}}\right)^2$ exists? Explain.
- (d) What value does the limit approach as z approaches 0 along the line y = x?
- (e) What can you say about $\lim_{z\to 0} \left(\frac{z}{\overline{z}}\right)^2$?

20. Consider the limit $\lim_{z \to 0} \left(\frac{2y^2}{x^2} - \frac{x^2 - y^2}{y^2} i \right)$.

- (a) What value does the limit approach as z approaches 0 along the line y = x?
- (b) What value does the limit approach as z approaches 0 along the line y = -x?
- (c) Do the answers from (a) and (b) imply that $\lim_{z\to 0} \left(\frac{2y^2}{x^2} \frac{x^2 y^2}{y^2}i\right)$ exists? Explain.
- (d) What value does the limit approach as z approaches 0 along the line y = 2x?
- (e) What can you say about $\lim_{z \to 0} \left(\frac{2y^2}{x^2} \frac{x^2 y^2}{v^2} i \right)$?

Problems 21-26 involve concepts of infinite limits and limits at infinity discussed in (i) of the Remarks. In Problems 21-26, use (21) or (22), Theorem 3.1.2, and the basic limits (15) and (16) to compute the given complex limit.

21.
$$\lim_{z \to \infty} \frac{z^2 + iz - 2}{(1 + 2i)z^2}$$

$$22. \lim_{z \to \infty} \frac{iz+1}{2z-i}$$

23.
$$\lim_{z \to i} \frac{z^2 - 1}{z^2 + 1}$$

24.
$$\lim_{z \to -i/2} \frac{(1-i)z + i}{2z + i}$$

25.
$$\lim_{z \to \infty} \frac{z^2 - (2+3i)z + 1}{iz - 3}$$

26.
$$\lim_{z \to i} \frac{z^2 + 1}{z^2 + z + 1 - i}$$

3.1.2 Continuity

In Problems 27–34, show that the function f is continuous at the given point.

27.
$$f(z) = z^2 - iz + 3 - 2i$$
; $z_0 = 2 - i$

28.
$$f(z) = z^3 - \frac{1}{z}$$
; $z_0 = 3i$

29.
$$f(z) = \frac{z^3}{z^3 + 3z^2 + z}$$
; $z_0 = i$

30.
$$f(z) = \frac{z - 3i}{z^2 + 2z - 1}; z_0 = 1 + i$$

31.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & |z| \neq 1 \\ 3, & |z| = 1 \end{cases}$$
; $z_0 = 1$

32.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z^2 + z + 1}, & |z| \neq 1 \\ \frac{-1 + i\sqrt{3}}{2}, & |z| = 1 \end{cases}; z_0 = \frac{-1 + i\sqrt{3}}{2}$$

33.
$$f(z) = \bar{z} - 3\operatorname{Re}(z) + i$$
; $z_0 = 3 - 2i$

34.
$$f(z) = \frac{\text{Re}(z)}{z + iz} - 2z^2$$
; $z_0 = e^{i\pi/4}$

In Problems 35–40, show that the function f is discontinuous at the given point.

35.
$$f(z) = \frac{z^2 + 1}{z + i}$$
; $z_0 = -i$

36.
$$f(z) = \frac{1}{|z|-1}$$
; $z_0 = i$

37.
$$f(z) = \text{Arg}(z); z = -1$$

38.
$$f(z) = \text{Arg}(iz); z_0 = i$$

39.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & |z| \neq 1 \\ 3, & |z| = 1 \end{cases}$$
; $z_0 = i$ 40. $f(z) = \begin{cases} \frac{z}{|z|}, & z \neq 0 \\ 1, & z = 0 \end{cases}$; $z_0 = 0$

In Problems 41–44, use Theorem 3.1.3 to determine the largest region in the complex plane on which the function f is continuous.

41.
$$f(z) = \text{Re}(z) \text{Im}(z)$$

42.
$$f(z) = \bar{z}$$

43.
$$f(z) = \frac{z-1}{z\bar{z}-4}$$

44.
$$f(z) = \frac{z^2}{(|z|-1)\operatorname{Im}(z)}$$

Focus on Concepts

- **45.** Use Theorem 3.1.1 to prove:
 - (a) $\lim_{z \to z_0} c = c$, where c is a constant.
- (b) $\lim_{z \to z_0} z = z_0$
- **46.** Use Theorem 3.1.1 to show that $\lim_{z \to z_0} \bar{z} = \bar{z}_0$.
- 47. Use Theorem 3.1.2 and Problem 46 to show that
 - (a) $\lim_{z \to z_0} \operatorname{Re}(z) = \operatorname{Re}(z_0)$.
 - (b) $\lim_{z \to z_0} \text{Im}(z) = \text{Im}(z_0)$.
 - (c) $\lim_{z \to z_0} |z| = |z_0|$.
- **48.** Use Theorem 3.1.1 to prove part (ii) of Theorem 3.1.2.
- **49.** The following is an epsilon-delta proof that $\lim_{z \to z_0} z = z_0$. Fill in the missing parts.

Proof By Definition 3.1.1, $\lim_{z \to z_0} z = z_0$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|\underline{\hspace{0.5cm}}| < \varepsilon$ whenever $0 < |\underline{\hspace{0.5cm}}| < \delta$. Setting $\delta = \underline{\hspace{0.5cm}}$ will ensure that the previous statement is true.

50. The following is an epsilon-delta proof that $\lim_{z \to z_0} \bar{z} = \bar{z}_0$. Provide the missing justifications in the proof.

Proof By Definition 3.1.1, $\lim_{z \to z_0} \bar{z} = \bar{z}_0$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|\underline{\hspace{0.5cm}}| < \varepsilon$ whenever $0 < |\underline{\hspace{0.5cm}}| < \delta$. By properties of complex modulus and conjugation, $|z - z_0| = |\overline{z - z_0}| = |\underline{\hspace{0.5cm}}|$. Therefore, if $0 < |z - z_0| < \delta$ and $\delta = \underline{\hspace{0.5cm}}$, then $|\bar{z} - \bar{z}_0| < \varepsilon$.

- **51.** In this problem we will develop an epsilon-delta proof that $\lim_{z \to 1+i} ((1-i)z + 2i) = 2 + 2i.$
 - (a) Write down the epsilon-delta definition (Definition 3.1.1) of $\lim_{z \to 1+i} [(1-i)z + 2i] =$
 - (b) Factor out (1-i) from the inequality involving ε (from part (a)) and simplify. Now rewrite this inequality in the form $|z-(1+i)|<\underline{\qquad}$.
 - (c) Based on your work from part (b), what should δ be set equal to?
 - (d) Write an epsilon-delta proof that $\lim_{z \to 1+i} [(1-i)z + 2i] = 2 + 2i$.
- **52.** In this problem we will develop an epsilon-delta proof that $\lim_{z \to 2i} \frac{2z^2 3iz + 2}{z + 2i} = 5i$.
 - (a) Write down the epsilon-delta definition (Definition 3.1.1) of $\lim_{z \to 2i} \frac{2z^2 3iz + 2}{z 2i} = 5i$.
 - (b) Simplify the inequality involving ε (from part (a)), then rewrite this inequality in the form |z-2i|<

3.2 Differe