Complex Analysis

Math 214 Spring 2014
(C) 2014 Ron Buckmire

Fowler 307 MWF 3:00pm - 3:55pm
http://faculty.oxy.edu/ron/math/312/14/

Class 14: Monday February 24

TITLE The Complex Logarithm
CURRENT READING Zill \& Shanahan, Section 4.1
HOMEWORK Zill \& Shanahan, §4.1.2 \# 23,31,34,42 44*;

SUMMARY

We shall return to the murky world of branch cuts as we expand our repertoire of complex functions when we encounter the complex logarithm function.
The Complex Logarithm $\log z$
Let us define $w=\log z$ as the inverse of $z=e^{w}$.
NOTE
Your textbook (Zill \& Shanahan) uses \ln instead of \log and Ln instead of Log.
We know that $\exp [\ln |z|+i(\theta+2 n \pi)]=z$, where $n \in \mathbb{Z}$, from our knowledge of the exponential function.
So we can define

$$
\log z=\ln |z|+i \arg z=\ln |z|+i \operatorname{Arg} z+2 n \pi i=\ln r+i \theta
$$

where $r=|z|$ as usual, and θ is the argument of z
If we only use the principal value of the argument, then we define the principal value of $\log z$ as $\log z$, where

$$
\log z=\ln |z|+i \operatorname{Arg} z=\log |z|+i \operatorname{Arg} z
$$

Exercise

Compute $\log (-2)$ and $\log (-2), \log (2 i)$, and $\log (2 i), \log (-4)$ and $\log (-4)$

Logarithmic Identities

$z=e^{\log z}$ but $\log e^{z}=z+2 k \pi i$ (Is this a surprise?)
$\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$
$\log \left(\frac{z_{1}}{z_{2}}\right)=\log z_{1}-\log z_{2}$
However these do not neccessarily apply to the principal branch of the logarithm, written as $\log z$. (i.e. is $\log (2)+\log (-2)=\log (-4) ?$

$\log z$: the Principal Branch of $\log z$

$\log z$ is a single-valued function and is analytic in the domain D^{*} consisting of all points of the complex plane except for those lying on the nonpositive real axis, where

$$
\frac{d}{d z} \log z=\frac{1}{z}
$$

Sketch the set D^{*} and convince yourself that it is an open connected set.
(Ask yourself: Is every point in the set an interior point?)

The set of points $\{z \in \mathbb{C}: \operatorname{Re} z \leq 0 \cap \operatorname{Im} z=0\}$ is a line of discontinuities known as a branch cut. By putting in a branch cut we say that we "construct $\log z$ from $\log z$."
Analyticity of $\log z$
We can use a version of the Cauchy-Riemann Equations in polar coordinates to help us investigate the analyticity of $\log z$

Why don't we investigate the analyticity of $\log z$?
If $x=r \cos \theta$ and $y=r \sin \theta$ one can rewrite $f(z)=u(x, y)+i v(x, y)$ into $f=u(r, \theta)+i v(r, \theta)$ in that case, the CREs become:

$$
u_{r}=\frac{1}{r} v_{\theta}, \quad v_{r}=-\frac{1}{r} u_{\theta}
$$

and the expression for the derivative $f^{\prime}(z)=u_{x}+i v_{x}$ can be re-written

$$
f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

EXAMPLE

Using this information, show that $\log z$ is analytic and that $\frac{d}{d z} \log z=\frac{1}{z}$.
(HINT: You will need to write down $u(r, \theta)$ and $v(r, \theta)$ for $\log z$)

Log z As A Mapping Function

Circular Arcs Get Mapped To Vertical Line Segments
$w=\log z$ maps the set $\left\{|z|=r \cap \theta_{0} \leq \operatorname{Arg} z \leq \theta_{1}\right\}$ onto the vertical line segment $\left\{\operatorname{Re}(w)=\operatorname{Ln}(r) \cap \theta_{0} \leq \operatorname{Im}(w) \leq \theta_{1}\right\}$

Segments of Rays Get Mapped To Horizontal Line Segments
$w=\log z$ maps the set $\left\{r_{0} \leq|z| \leq_{1} \cap \operatorname{Arg} z=\theta\right\}$ onto the horizontal line segment $\left\{\operatorname{Ln}\left(r_{0}\right) \leq \operatorname{Re}(w) \leq \operatorname{Ln}\left(r_{1}\right) \cap \operatorname{Im}(w)=\theta_{1}\right\}$

Complex Plane Without Origin Gets Mapped To Infinite Horizontal Strip Of Width 2π $w=\log z$ maps the set $|z|>0$ onto the region $\{-\infty<\operatorname{Re}(w)<\infty \cap-\pi<\operatorname{Im}(w) \leq \pi\}$

GroupWork

Find the image of the annulus $2 \leq|z| \leq 2$ under the mapping of the principal logarithm $\operatorname{Ln} z$.

Zill \& Shanhan, page 164, $\# \mathbf{3 5}$. Solve the equation $e^{z-1}=-i e^{3}$

