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Solving for the Roots of the Cubic Equation

Finding the solution to the roots of a polynomial equation has been a fundamental

problem of mathematics for centuries. As mathematicians, we all know how to get the

solution to the roots of a polynomial of degree two, which is given by the quadratic formula

that depends upon the coefficients of x2, x and the constant term c. There is an explicit

formula for discovering the roots of a quadratic equation, but is there an explicit formula for

higher order polynomials, such as the cubic equation? As it turns out, an explicit formula

is given that produces a solution to the roots of a cubic polynomial, known as the cubic

formula, which was first discovered in the 16th century and later revealed to the public

by the mathematician Gerolamo Cardano in his book Ars Magna, or better known as The

Great Art. In his work, Cardano uses geometric figures to develop his method in arriving to

the cubic formula, which thereby solves the cubic equation, finding both real and imaginary

roots of the equation. Cardano’s method of solving for the general cubic equation involves

reducing the equation

z3 + az2 + bz+ c = 0 (1)

to a depressed cubic equation through a translation of z, which allows us to geometrically

derive a solution for the roots. We will also be testing this cubic formula on a set of coefficients

for a, b, and c by finding a depressed cubic equation and using the cubic formula to find

its roots. Then, we will graph the original polynomial and depressed equation to compare

x-intercepts, and find the final solutions of the cubic equation.

To find a root of the cubic equation, it is sufficient to find a depressed cubic equation by

a means of translation. Depressing a cubic equation means to find a linear formula that will
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be equal to the cube of the independent variable. In other words, the cubic equation would

be depressed to the form

x3 = mx+ n (2)

where m and n are constants, and x is a translation of z. In the case of Equation (1),

this involves translating z into the form z = x − a/3, and plugging this equation for z

into Equation (1). We will demonstrate how this transforms Equation (1) into the form of

Equation (2) later. Cardano chose to solve for the cubic equation in this manner because

at the time, there was no algebraic method for solving for the roots of the cubic equation.

However, he could represent a cubic such as x3 geometrically as a cube with edges length

x, and he could decompose the cube as to solve for coefficients m and n in Equation (2).

Cardano began by dividing x into two shorter lengths u and v, such that x = u + v, which

in turn divides each face of the cube into four different rectangles, as shown below.
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Consequently, this decomposes the cube into eight smaller cubes, as shown below.
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These cube decompositions have volumes u3, 3u2v, 3uv2, and v3. Since the sum of the

volumes of these eight cubes equals the volume of the original cube, Cardano could write x3

explicitly as

x3 = u3 + 3u2v+ 3uv2 + v3 (3)

which, amazingly, is the binomial expansion for (u+ v)3. Now that Cardano had an explicit

formula for x3, he could form it into a linear equation by letting m = 3uv and n = u3 + v3.

Hence,

x3 = m(u+ v) + n = mx+ n

Once Cardano had accomplished this, he needed to find a formula for x in terms of m and

n that would solve Equation (2), which he could achieve since he had formulas for m and n

in terms of u and v. Since x is equivalent to (u3)
1
3 + (v3)

1
3 , Cardano first solved for u3 and

v3 by using the procedure as follows:

u3 = n− v3 = n− (m
3u
)3

u3 = n− m3

27u3

27(u3)2 = 27nu3 −m3

27(u3)2 − 27nu3 +m3 = 0

Since this is a quadratic equation and the quadratic formula had already been established,

Cardano used the quadratic formula to solve for u3.

u3 =
27n±

√
272n2 − 4(27)m3

2(27)

=
n

2
±
(
272n2 − 4(27)m3

4(27)2

) 1
2

=
n

2
±
(
n2

4
−

m3

27

) 1
2

Using this same process, the same solution as above is given for v3. However, there is the
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condition that n = u3 + v3 and n must be a real number, which means that u3 and v3 must

be complex conjugates of one another. Therefore, the explicit solution to the depressed cubic

equation in terms of the coefficients m and n is given by:

x =

[
n

2
+

(
n2

4
−

m3

27

) 1
2

] 1
3

+

[
n

2
−

(
n2

4
−

m3

27

) 1
2

] 1
3

. (4)

Thus, Cardano arrived a solution to the depressed cubic equation given in Equation (2). To

find the roots of the general cubic equation given in Equation (1), one simply needs to plug

the above formula into z = x+ 1. Now that we have found a formula which produces a root

of a cubic equation, we will test it on an example of a cubic equation and compare the root

found by this formula to the roots computed algebraically.

We will begin by transforming the general cubic equation into its depressed form as

previously discussed by setting,

z = x−
a

3
. (5)

Such that when we input this new value for z in Equation (1) we should get an output of

Equation (2).

z3 + az2 + bz+ c = 0(
x−

a

3

)3
+ a

(
x−

a

3

)2
+ b

(
x−

a

3

)
+ c = 0

x3 − ax2 +
a2

3
x−

a3

27
+ ax2 −

2a2

3
x+

a3

9
+ bx−

ba

3
+ c = 0

After simplifying the above expanded equation and isolating the x3 term to one side of the

eqaution, we get the following depressed cubic equation:

x3 =

(
a2

3
− b

)
x+

(
−
2a3

27
+

ba

3
− c

)
(6)

As we can see from Equation (6), our m and n-values of the depressed cubic equation are
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(
a2

3
− b
)

and
(
− 2a3

27
+ ba

3
− c
)

respectively. In order to test Cardano’s method we used our

example cubic equation:

z3 + 3z2 − 3z− 9 = 0. (7)

Where we have the (a, b, c) values equal to (3,−3,−9), giving us through menial algebric

computation our coefficient values for the depressed equation to be m = 6 and n = 4.

When we plug-in these values into the general depressed cubic equation we get the depressed

equation,

x3 = 6x+ 4 (8)

for Equation (7). Now that we have our depressed cubic equation, we can plug in our m

and n-values into the cubic formula for the general cubic equation:

x =

[
n

2
+

(
n2

4
−

m3

27

) 1
2

] 1
3

+

[
n

2
−

(
n2

4
−

m3

27

) 1
2

] 1
3

=

[
4

2
+

(
42

4
−

63

27

) 1
2

] 1
3

+

[
4

2
−

(
42

4
−

63

27

) 1
2

] 1
3

=
[
2+
√
−4
] 1

3

+
[
2−
√
−4
] 1

3

When simplified further, we get a cubic root of:

x = [2+ 2i]
1
3 + [2− 2i]

1
3 (9)

In order to get a cubic root for our example cubic equation we use the corresponding co-

efficient value of our cubic equation and the cubic solution (9), and plug it into equation

(5):

z = [2+ 2i]
1
3 + [2− 2i]

1
3 − 1. (10)

Using the online mathematical application Wolfram Alpha, we pluged-in (10) into our cubic

equation (7) and got the expected value of zero. Thereby we were able to find a solution for
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our cubic example and thus proving that Cardano’s method for calculating the cubic root

of equation (1) works. Wolfram also provided us with the fact that the solution (10) is an

alternate form of the cubed root of three, such that when solving equation (7) by using the

method of factoring by grouping we get,

z3 + 3z2 − 3z− 9 = 0

z2(z+ 3) − 3(z+ 3) = 0

(z2 − 3)(z+ 3) = 0.

From this method we are able to conclude that the cubic roots to our cubic equation are

±
√
3 and −3. We proceded to graph our polynomial given in equation (7) along with the

polynomial from the depressed cubic equation (8) into Wolfram, therby estimating the x-

intercepts from the graphs. In order to accomplished this we first manipulated equation (5),

isolating x in terms of z with the a coefficent value equal to 3 given from equation (7):

x = z+ 1

x3 = 6x+ 4

(z+ 1)3 = 6(z+ 1) + 4

z3 + 3z2 + 3z+ 1 = 6z+ 10.

This implies that

z3 + 3z2 − 3z− 9 = 0.

Plugging in both of these polynomials into Wolfram produced the following graphs, where

we can observe the corresponding blue line to the cubic polynomial and the purple line to

the depressed cubic overlaying one another, thereby producing the same graph. The two

graphs serve the purpose of demonstrating how the polynomials behave the same on the

entire plane and proving the x-intercepts occuring at ±
√
3 and −3 as expected from our
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algebraic results.
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By deriving a formula that solves for the depressed cubic equation, Cardano provided

another method to solve for the cubic equation in addition to the algebraic techniques such

as the factorization by grouping. With both of these tools at our disposal, we are now guar-

anteed to be able to find at least one root of a cubic equation in the form of Equation (1).

This method is especially useful for cubic equations that cannot be factored algebraically, as

we now have a procedure from which we can find a root.

4Graph drawn through Mathematica
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