Complex Analysis

Math 214 Spring 2004 © 2004 Ron Buckmire

Fowler 112 MWF 3:30pm - 4:25pm http://faculty.oxy.edu/ron/math/312/04/

Class 22: Monday March 22

SUMMARY Independence of Path CURRENT READING Saff & Snider, §4.3

HOMEWORK Saff & Snider, Section 4.3 # 1,2,4,5,7

We have been practicing our complex integration skills. Today we will learn how to use **antiderivatives** and the **Cauchy-Goursat Theorem** to evaluate contour integrals more efficiently (simply!)

Recall that the value of $\int_C 2\overline{z}^2 dz$ did depend on the contour when we evaluated it in the previous class.

However the value of $\int_C 2z^2 dz$ did not depend on the contour chosen and in each case the integral is equal to $\frac{-32}{3}$

How is $f(z) = 2z^2$ a different function than $g(z) = 2\overline{z}^2$? $2z^2$ is a ______ while $2\overline{z}^2$ is a ______

Independence of Path

THEOREM: Suppose that the function f(z) is continuous in a domain (open connected set) D and has an antiderivative F(z) throughout D, i.e. dF/dz = f(z) at each point in D. Then for every contour Γ lying in D connecting z_1 to z_2 we have the result

$$\int_{\Gamma} f(z) \, dz = F(z_2) - F(z_1)$$

In otherwords, the value of the integral is **independent of the path** chosen to link z_1 and z_2

So, getting back to the difference between $f(z) = 2z^2$ and $g(z) = 2\overline{z}^2$ we know that $2z^2$ has the property that it is continuous and is equal to the derivative of $2z^3/3$ on the open set $z \in \mathbb{C}$. g(z) has no similar antiderivative. (This is not surprising, since g(z) doesn't have a derivative either.)

Example

 $\int_C 2z^2 dz$ = where C is a contour from 2 to -2

Note that according to the above theorem the function F(z) will be **analytic** and **continuous** on the domain D (since it has a derivative at every point of the open set D).

A corollary of the above theorem is the famous

Cauchy-Goursat Theorem: If f(z) is analytic at all points interior to and on any simple closed contour Γ , then

$$\oint_{\Gamma} f(z)dz = 0.$$

(Is this result surprising?)

GROUPWORK

$$\overline{1. \int_C \sin(iz) + 2e^z dz}$$
, where C is a contour joining 0 to πi

$$2.\oint_C \frac{dz}{z^2 - 4} dz, \quad \text{where } C : |z| = 1$$

3.
$$\int_{-i}^{i} \frac{dz}{z^2}$$
 and $\oint_{C_r} \frac{dz}{z^2}$ where $C_r: |z| = 1$