Complex Analysis

Math 214 Spring 2004 © 2004 Ron Buckmire

Fowler 112 MWF 3:30pm - 4:25pm http://faculty.oxy.edu/ron/math/312/04/

Class 21: Friday March 12

SUMMARY More Examples of Contour Integration CURRENT READING Saff & Snider, §4.2 HOMEWORK Saff & Snider, Section 4.2 # 3,7,8,12,14 Extra Credit 16, 17

Parametricization of a line segment

Can you come up with a formula for a parametrization z(t) of a directed line segment from point z_1 to z_2 where t starts at t_1 and ends at t_2 so that $z(t_1) = z_1$ and $z(t_2) = z_2$? Write it down below:

Exercise

Consider $\int_C 2z^2 dz$ where C is the directed line segment from z=2 to z=-2 (Sketch the contour and evaluate the integral.)

GROUPWORK

Again evaluate $\int_C 2z^2 dz$ where C is the circular arc going from z = 2 to z = -2. (Sketch the contour and evaluate the integral.)

SUPPLEMENTARY EXERCISE

If you want more practice evaluating contours you should try to evaluate $\int_C 2z^2 dz$ where C is the directed line segment going from z=2 to z=-2 via the point z=2i. (Sketch the contour and evaluate the integral.)

Question

What's the difference between the integral $\int_{-2}^{2} 2\overline{z}^2 dz$ and $\int_{-2}^{2} 2z^2 dz$? Does the value of a contour integral depend on the path taken?

Does path dependence of a contour integral depend on the function involved? What property of the function is involved?

Properties of Contour Integrals

$$\int_{C} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz$$

$$\int_{-C} f(z)dz = -\int_{C} f(z)dz$$

$$\int_{C} z_{0}f(z)dz = z_{0} \int_{C} f(z)dz, \quad z_{0} \in \mathbf{C}$$

$$\int_{C} f(z) + g(z)dz = \int_{C} f(z)dz + \int_{C} g(z)dz$$

$$\left| \int_{C} f(z)dz \right| \leq ML$$

where L is the length of the contour and $\int_a^b |z'(t)| dt \le L$ and M is an upper bound on f(z), $|f(z)| \le M$

Exercise

If Γ is the arc of the circle |z|=2 traversed in the counter-clockwise direction, then we want to show that

$$\left| \int_{\Gamma} \frac{e^z}{z^2 + 1} dz \right| \le \frac{4\pi e^2}{3}$$