Complex Analysis

Math 214 Spring 2004 © 2004 Ron Buckmire

Fowler 112 MWF 3:30pm - 4:25pm http://faculty.oxy.edu/ron/math/312/04/

Class 15: Wednesday February 25

SUMMARY Branch Cuts and Riemann Surfaces CURRENT READING Saff & Snider, §3.3

HOMEWORK Saff & Snider, Section 3.3 # 1, 2, 3, 4, 5

Branching: Producing Single-valued functions from Multiple-valued ones

A single-valued function F(z) is said to be a *branch* of a multiple-valued function f(z) in a domain D if F(z) is single-valued and analytic in D and has the property that for each $z \in D$, the value F(z) is one of the values of f(z)

Branch cuts do not have to be along the x-axis, they can be any line which when removed from the domain of definition of the multi-valued function, produce a single valued function.

Other branches of $\log z$

One can define other analytic branches of $\log z$ by choosing different branch cuts.

The usual way to do this is to make the branch cut along $\theta = \alpha$ starting at the origin, so that

$$\log z = \ln |z| + i\theta$$
, where $\alpha < \theta \le \alpha + 2\pi$

These branches of $\log z$ can be denoted \mathcal{L}_{α} , or \log_{α} where $\theta = \alpha$ is where the branch cut is.

A **branch point** of a function f is a point which is common to all branch cuts of f. So, 0 is a branch point of $\log z$

EXAMPLE

Determine the domain of analyticity for the function f(z) = Log (3z - i) and compute f'(z) What is f(i)? What about f'(i)?

Exercise

Saff & Snider, page 124, #13

Find a branch of $\log(2z-1)$ that is analytic at all points in the plane except for those on the following rays:

(a)
$$\{z = z + iy : x \le 1/2, y = 0\}$$

(b)
$$\{z = z + iy : x \ge 1/2, y = 0\}$$

(c)
$$\{z = z + iy : x = 1/2, y \ge 0\}$$

Riemann Surfaces Let's look at the Riemann Surface for the function $f(z)=z^{1/2}$. Do we understand why this function needs a branch cut?
Do we understand how the Riemann surface then acts as continuous domain for $f(z)=z^{1/2}$

Now let's turn to the Riemann surface for $\log(z)$. What are the main difference between the

Riemann surface for the two functions? What do they have in common?