Complex Analysis

Math 214 Spring 2004 © 2004 Ron Buckmire

Fowler 112 MWF 3:30pm - 4:25pm http://faculty.oxy.edu/ron/math/312/04/

Class 13: Friday February 20

SUMMARY Complex Trigonometric Functions and Complex Hyperpolic Trigonometric Functions

CURRENT READING Saff & Snider, §3.2

HOMEWORK Saff & Snider, Section 3.2 # 13, 14, 15, 17, 18, Extra Credit: #20, 23

Complex trigonometric functions

Once we have a handle on $\exp z$ we can use it to define other functions, most notably $\sin z$ and $\cos z$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i},$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

EXAMPLE

Show that $\frac{d}{dz}\cos z = -\sin z$ by using the definition of $\cos z$

There a whole bunch of typical trigonometric identities which are valid for complex trig functions. Most of these can be proved using the definitions involving exponentials. For example, $\tan z$, $\sec z$ are analytic everywhere except at the zeroes of $\cos z$.

Exercise

Find the zeroes of $\cos z$ and $\sin z$

The usual rules of derivatives of the trig functions remain valid for their complex counterparts.

Complex Trigonometric Identities

$$\sin(z+2\pi) = \sin z, \qquad \cos(z+2\pi) = \cos z$$

$$\sin(-z) = -\sin z, \qquad \cos(-z) = \cos z$$

$$\sin^2 z + \cos^2 z = 1, \qquad \tan^2 z + 1 = \sec^2 z$$

$$\sin 2z = 2\sin z \cos z, \qquad \cos 2z = \cos^2 - \sin^2 z$$

$$\sec z = \frac{1}{\cos z}, \qquad \tan z = \frac{\sin z}{\cos z}$$

$$\frac{d}{dz} \tan z = \sec^2 z, \frac{d}{dz} \sec z = \sec z \tan z \qquad \frac{d}{dz} \sin z = \cos z, \frac{d}{dz} \sin z = \cos z$$

Similarly the hyperbolic trigonometric functions can be defined using the complex exponential and the newly-defined complex trig functions

$$\sinh z = \frac{e^z - e^{-z}}{2}, \qquad \cosh z = \frac{e^z + e^{-z}}{2}$$

Complex Hyperbolic Trigonometric Identities

$$\sinh z = -i \sin iz$$
, $\cosh z = \cos(iz)$
 $\frac{d}{dz} \sinh z = \cosh z$, $\frac{d}{dz} \cosh z = \sinh z$

${\bf Group Work}$

Show that the mapping $w = \sin(z)$

- (a) maps the y-axis one-to-one and onto the v-axis
- (b) maps the ray $\{z: \text{Arg } z = \pi/2\}$ one-to-one and onto the ray $\{w: \text{Re } (w) > 1, \text{ Im } w = 0\}$

Exercise

1. Show that $\sin(\overline{z}) = \overline{\sin(z)}$

2. For what values of z does cos(z) = 2?