Complex Analysis

Math 214 Spring 2004 © 2004 Ron Buckmire

Fowler 112 MWF 3:30pm - 4:25pm http://faculty.oxy.edu/ron/math/312/04/

Class 8: Friday February 6

SUMMARY Continuity, Differentiability and Analyticity

CURRENT READING Saff & Snider, §2.3

HOMEWORK Saff & Snider, Section 2.3 # 3, 4, 7, 9, 11, 13 Extra Credit: #15

Continuity

A complex function f(z) is **continuous** at a point z_0 if all three of the following statements are true

- 1: $\lim_{z \to z_0} f(z)$ exists
- 2: $f(z_0)$ exists
- 3: $\lim_{z \to z_0} f(z) = f(z_0)$

Consider the function below:

$$f(z) = \begin{cases} \frac{z^2 + 4}{z - 2i}, & z \neq 2i \\ 3 + 4i, & z = 2i \end{cases}$$

Answer the following questions

- 1. What is the value of $\lim_{z\to 2i} f(z)$?
- 2. Is f(z) continuous at z = 2i?
- 3. Is f(z) continuous at points $z \neq 2i$?

We say that the function f(z) defined above has a **removable singularity** at z = 2i. Write down the definition of f(z) which has had the singularity removed.

More Aspects of Continuity

As with real functions of a real variable, sums, differences, products and compositions of continuous functions are continuous.

When f(z) continuous $\iff u(x,y)$ and v(x,y) continuous

When f(z) continuous in a region R, then |f(z)| is also continuous in the region R and if R is a bounded and closed set then there exists a positive number M so that $|f(z)| \leq M \forall z \ni R$.

Derivative

Let f be defined in a neighborhood around z_0 . The **derivative** of f at z_0 , denoted by $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

provided the above limit exists. The function f is said to be differentiable at z_0 . Consider $f(z)=z^2$. Write down the expression $\frac{\Delta w}{\Delta z}=\frac{f(z+\Delta z)-f(z)}{\Delta z}$

The derivative $\frac{dw}{dz} = f'(z)$ is defined as $f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$ Evaluate this limit for our function $f(z) = z^2$.

Write down f'(z)

Write down the real and imaginary parts of the function $f(z) = z^2$

Write down the real and imaginary parts of the function f'(z) See any patterns?

Rules of Differentiation

The standard rules of differentiating function that you learned for real functions basically apply to complex functions. Scilicet:

$$\frac{d}{dz}(c) = 0$$
 $\frac{d}{dz}(z) = 1$ $\frac{d}{dz}(z^n) = nz^{n-1}$ $\frac{d}{dz}(e^z) = e^z$

Linearity

$$\frac{d}{dz}[cf(z) + g(z)] = cf'(z) + g'(z) \qquad c \text{ constant}$$

Product Rule

$$\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + f(z)g'(z)$$

Quotient Rule

$$\frac{d}{dz} \left[\frac{f(z)}{g(z)} \right] = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}$$

Aspects of Differentiation

One of the most important aspects to remember about differentiability and continuity is:

DIFFERENTIABILITY \Rightarrow CONTINUITY

CONTINUITY DOES NOT IMPLY DIFFERENTIABILITY.