Quiz 10

	<u>-</u>
Name:	
Date:	Friday April 9
Time Begun:	Ron Buckmire
Time Ended:	

Complex Analysis

Topic: Computing Residues and applying the Cauchy Residue Theorem

The point of this quiz is to provide you with an opportunity to demonstrate your facility with using Residues.

Reality	Check:
---------	--------

EXPECTED SCORE :	/10	ACTUAL SCORE :	/10

Instructions:

- 0. Please look for a hint on this quiz posted to blackboard.oxy.edu
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday, April 12, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,	, pledge my honor as a human being and Occidental student,
that I have followed all the rules above	to the letter and in spirit.

- **1.** Consider the function $f(z) = \csc(z) = \frac{1}{\sin(z)}$
- (a) (6 points) Show that the cosecant function $\csc(z)$ has poles of order 1 at integer multiples of π with residue equal to ± 1 at each pole.

(b) (4 points) Use the above information to evaluate the integral $\oint_C \csc(z) dz$ where C is the circle |z| = 4 traversed **twice** in the **clockwise** direction.