BONUS Quiz 9A

Complex Analysis

Name:	
Date: Time Begun: Time Ended:	Friday April 2 Ron Buckmire
Topic: Application of Cauchy Integral Form	ula
The point of this quiz is to illustrate an application of	of Cauchy's Integration Formulas to a real integral
Reality Check: EXPECTED SCORE:/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to	blackboard.oxy.edu
1. Once you open the quiz, you have 30 minu end time at the top of this sheet.	tes to complete, please record your start time and
2. You may use the book or any of your class	notes. You must work alone.
3. If you use your own paper, please staple it have a stapler, buy one.	to the quiz before coming to class. If you don't
4. After completing the quiz, sign the pledge b to these rules.	elow stating on your honor that you have adhered
5. Your solutions must have enough details su and determine HOW you came up with you	ch that an impartial observer can read your work ir solution.
6. Relax and enjoy	
7. This quiz is due on Monday, April 5 CEPTED.	, in class. NO LATE QUIZZES WILL BE AC-
Pledge: I,, pledge methat I have followed all the rules above to the let	ny honor as a human being and Occidental student, ter and in spirit.

We'll show that $I = \int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = \frac{2\pi}{3}$

a. (2 points) Show that if $z = e^{i\theta} = \cos \theta + i \sin \theta$ then $\sin \theta = \frac{z - 1/z}{2i}$, |z| = 1 and $dz = iz \ d\theta$.

b. (2 points) Show that the value of the real integral I is exactly the same as the value of the complex integral $\oint_{|z|=1} \frac{2dz}{4z^2+10iz-4}$

c. (2 points) Show that you can write the denominator in (b) as $4(z-z_0)(z-z_1)$ by finding the roots of the quadratic. (HINT: z_0 and z_1 are both have Im z < 0 and Rez = 0)

d. (2 points) Show that the complex integral can be written as $\oint_{|z|=1} \frac{g(z)}{z-z_1}$ where g(z) is completely analytic in and on |z|=1.

e. (2 points) Thus the Cauchy Integral Formula tells you that the value of I can be written as a simple formula involving g. What is it?