Quiz 8	Complex Analysis
Name:	
Date: Time Begun: Time Ended:	Friday March 26 Ron Buckmire
Topic: Complex Integration	
The point of this quiz is to provide practice wi	th complex integration on contours
Reality Check: EXPECTED SCORE:/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz pos	ted to blackboard.oxy.edu
1. Once you open the quiz, you have 30 rend time at the top of this sheet.	minutes to complete, please record your start time and
2. You may use the book or any of your	class notes. You must work alone.
3. If you use your own paper, please sta have a stapler, buy one.	ple it to the quiz before coming to class. If you don't
4. After completing the quiz, sign the ple to these rules.	edge below stating on your honor that you have adhered
5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.	
6. Relax and enjoy	
7. This quiz is due on Monday, M. ACCEPTED.	Iarch 29, in class. NO LATE QUIZZES WILL BE
Pledge: I,, ple that I have followed all the rules above to the	dge my honor as a human being and Occidental student, he letter and in spirit.

a. (6 points) One interesting application of contour integration is the ability to find the area of odd shapes in the plane. If we denote the area enclosed by a positively-oriented contour C by A, then

$$A = \frac{1}{2i} \oint_C \overline{z} \, dz$$

Recalling that the parametrization given by $z(t) = a\cos t + ib\sin t$, $0 \le t \le 2\pi$ represents an elliptical contour C with horizontal axis a and vertical axis b use the formula for A to compute the area enclosed by an ellipse. (Your final answer should only involve π , a and b.)

b. (4 points) On the same contour as part (a) find the value of B, where

$$B = \frac{1}{2i} \oint_C z \, dz$$

(HINT: think how the integrands of A and B are different to obtain the value of the integral without much work.) EXPLAIN YOUR ANSWER.