Calculus 1

1. Find values of the constants k and m, if possible, that will make the function f continuous

everywhere,
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2. Use the limit laws, and if necessary, L'Hépital’s Rule to find the following limit
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3. Suppose that the number of bacteria in a culture at time ¢ is given by
N = 5000(25 + te™t/20),

(a) Find the largest and smallest number of bacteria in the culture during the time interval
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(b) At what time during the time interval in part (a) is the number of bacteria decreasing most
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4. A church window consisting of a rectangle topped by a semicircle is to have a perimeter p. Find
the radius of the semicircle if the area of the window is to be maximum.
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5. Suppose that you have money in an account that is earning interest at an APR of 4% compounded
continuously and that you add a total of $1000 to the account every year applied at a constant
rate so that the rate of change of money M in the account is given by

aM
dt

where time ¢ is measured in years and money M is measured in dollars. Also suppose that you
have $8000 in the account at the start of year three, i.e. M(3) = 8000.

= (.04)M + 1000,

(a) Use a local linear approximation to estimate how much money will be in the account at the
end of January of the third year, i.e. use a local linear approximation to estimate M (3 + T1§>

(b) Use the second derivative to determine if your approximation is an overestimate or an un-

derestimate. Explain your answer, | M ( 3\ - goa (o)
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