MATHEMATICS COMPREHENSIVE EXAMINATION, SPRING 2006

Discrete Mathematics

Please answer the following questions without working out the permutations, combinations, factorials or powers (i.e. do not simplify your answers).

21. Let $A = \{(p,q)| p, q \in \mathbb{Z}, q \neq 0\}$. Define the relation \sim on A by

$$(p,q) \sim (r,s) \iff p \cdot s = r \cdot q$$

Prove or disprove: ~ is an equivalence relation on A.

Symmetric $a \sim b \Rightarrow b \sim a$ $(r,S) \sim (p,Q) \iff r \cdot Q = p \cdot S$ this is the Since $pS = rQ \Leftrightarrow (p,Q) \sim (p,Q) \iff p \cdot Q = pQ$ this is fine alway $(p,Q) \sim (p,Q) \iff p \cdot Q = pQ$ this is fine alway

Transitive $a \sim b$ and $b \sim c \Rightarrow a \sim c$ Transitive $a \sim b$ and $b \sim c \Rightarrow a \sim c$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u) \Rightarrow (p,Q) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u) \Rightarrow (p,Q) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u) \Rightarrow (p,Q) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u) \Rightarrow (p,Q) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u) \Rightarrow (p,Q) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u) \Rightarrow (p,Q) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u)$ $(p,Q) \sim (r,S)$ and $(r,S) \sim (t,u)$ $(p,Q) \sim (t,u)$ (p,Q)

22. Prove or disprove: "The following logical proposition is true no matter what the truth values of propositions p and q are: "

(p o q) o (eg q o eg p).							
F) (21	P -> 2	79	7P	179 -> 7p	$(p \rightarrow 2) \rightarrow (72 \rightarrow 7p)$
1	r -	T	1	F	+	+	+
<u>_</u>			F	T	F	F	T
		7	+	F	T	+	T
_ <u>_</u>	-	F	+	T	12	\ T	T

Tautology

- 23. An ice cream shop has 21 flavors of ice cream. You can order either one or two scoops on a cone.
 - a. If the order in which the scoops are placed on the cone doesn't matter, how many different ways can you order a cone from this ice cream shop?
 - b. If the order in which the scoops are placed on the cone does matter, how many different ways can you order a cone from this ice cream shop?

one 21+21² = # of scoops with one or two when order matters

21+(21)+21 = # of scoops with one or two when order does Not matter

Choosins double havors
250000521

24. a. The following statement is false! Correct it.

"A function $f: X \to Y$ is one-to-one if and only if $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y$."

b. How many *onto* functions are there from X to Y if |X| = 3 and |Y| = 2?

a. A function $f:X \to Y$ is one-to-one if and only if $\forall x_1, x_2 \in X \iff x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

b. Number of Functions from (XI to (Ylis (XI For number of onto functions will be less. CASEZ : Range is 2 elements

25. Prove that the four-digit positive integer n = abcd is divisible by 9 if and only if a + b + c + d is divisible by 9.

The about means that
$$n = 1000a + 100b + 10c+d$$

If about is divisible by 9 then
$$= 0 \pmod{9}$$

$$= 999a + 99b + 9c \pmod{9}$$

$$= 4b + c + d = 0 \pmod{9}$$
So $a + b + c + d = 0 \pmod{9}$