BONUS QUIZ 4

Name: _____

Date: _____

Friday March 7 Ron Buckmire

Topic : Rank, Independence, Dimension and Basis

The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of rank, span, independence and basis.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 1. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/214/08/
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. NO UNSTAPLED QUIZZES WILL BE ACCEPTED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday March 17, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Linear Systems

Math 214 Spring 2008 SHOW ALL YOUR	WORK BONUS Quiz 4
Given $A = \begin{bmatrix} 1 & 5 & 3 & 1 & 0 \\ -1 & -3 & 0 & 0 & 2 \\ 3 & -3 & 1 & -6 & 1 \\ 2 & -4 & -1 & -5 & 0 \end{bmatrix}$ with $\operatorname{rref}(A) = R =$	$\begin{bmatrix} 1 & 0 & 0 & -1.5 & -0.5 \\ 0 & 1 & 0 & 0.5 & -0.5 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Fill in the blanks. Write in explanations in the gaps bet	ween questions.
a. $\operatorname{col}(A)$ is a subspace of	
b. The rank of the matrix <i>A</i> is	
c. $\operatorname{null}(A)$ is a subspace of	
d. The dimension of $col(A)$ is	<u>-</u> .
e. There are vectors in a basi	s of $row(A)$.
f. $row(A)$ is a subspace of	
g. $\operatorname{null}(A)$ is spanned by the vectors	
h. The span of the columns of R is all of \mathbb{R}^3	TRUE or FALSE (circle one).
i. $A\vec{x} = \vec{b}$ will be solvable for any $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ 0 \end{bmatrix}$.	TRUE or FALSE (circle one).

j. An example of a basis for col(A) is _____.