Closed book. Closed notes. No Calculators. Please write very legibly. You may use the back of each sheet for extra space.

1. (25 points) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Given that $\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right]$,
(a) Find the dimensions of $\operatorname{row}(A), \operatorname{col}(A)$, and $\operatorname{null}(A)$. Explain your reasoning.
(b) Is each of the following true or false? Just write T or F for each, without any explanations.
i. $\operatorname{row}(A)=\operatorname{row}(\operatorname{rref}(A))$
ii. $\operatorname{col}(A)=\operatorname{col}(\operatorname{rref}(A))$
iii. $\operatorname{null}(A)=\operatorname{null}(\operatorname{rref}(A))$
(c) Is the vector $[3,0,-3]$ in the row space of A ? Explain your reasoning clearly.
(d) Is the vector $\left[\begin{array}{c}783 \\ -95\end{array}\right]$ in the column space of A ? You may not do any computations! Explain your reasoning clearly.
2. (15 points) Show that $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ is an eigenvector of the matrix $A=\left[\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right]$ and find the eigenvalue corresponding to this eigenvector.
3. (20 points) Prove that if a square matrix A is invertible then $\operatorname{det}(A) \neq 0$.
4. (15 points) Let T be the transformation given by $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}y \\ x \\ x+y\end{array}\right]$.
(a) Is T a linear transformation? Prove your answer.
(b) Recall that $[T]$ represents the standard matrix of T. Which of the following is true? Just circle one without any explanations.
i. $\operatorname{dim}(\operatorname{range}(T))>\operatorname{dim}(\operatorname{col}([T]))$.
ii. $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(\operatorname{col}([T]))$.
iii. $\operatorname{dim}(\operatorname{range}(T))<\operatorname{dim}(\operatorname{col}([T]))$.
iv. There isn't enough information to determine which of the above is true.
5. (25 points) Let $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
(a) Is $\{\vec{u}, \vec{v}\}$ an orthogonal set? Prove your answer.
(b) Let $W=\operatorname{span}(\vec{u}, \vec{v})$. Is $\{\vec{u}, \vec{v}\}$ a basis for W ? Explain your reasoning very briefly.
(c) Find a basis for W^{\perp}. Show all work. (Hint: We know two methods to do this: (i) Find a basis for the nullspace of some matrix. (ii) Take the cross product of some vectors. The second method is shorter. Whichever method you choose, briefly explain why the method gives a basis for W^{\perp}.)
(d) Let $\vec{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Find the orthogonal decomposition of \vec{b} with respect to W. Show and explain all work. (Hint: There two ways to do this: (i) Finding several projections and adding or subtracting some vectors. (ii) Finding just one projection and doing just one subtraction. The second way is shorter. You may choose either one.)
