Point Distribution ($\mathrm{N}=21$)

Range	$100+$	$90+$	$85+$	$80+$	$75+$	$70+$	$65+$	$60+$	$55+$	$50+$	$45+$	$40+$	$40-$
Grade	$\mathrm{A}+$	A	$\mathrm{A}-$	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	C	$\mathrm{C}-$	$\mathrm{D}+$	D	$\mathrm{D}-$	F
Frequency	2	4	2	1	1	1	1	2	1	4	0	0	1

Summary Overall class performance was somewhat mediocre. The mean score was 72 . The median score was 71. The high score was 105.
\#1 Invertible Matrices. These are TRUE or FALSE questions. (a)
FALSE The equation $A \vec{x}=\overrightarrow{0}$ has a nonzero solution. If A is invertible $A \vec{x}=\vec{b}$ always has only one solution, $\vec{x}=A^{-1} \vec{b}$.
TRUE For every vector \vec{b} in \mathbb{R}^{n}, the equation $A \vec{x}=\vec{b}$ always has exactly one solution. See above.
TRUE The rows of A form a basis for \mathbb{R}^{n}. The dimension of the row space is the rank of A, which equals n for an invertible matrix. Thus the n rows of A are linearly independent and form a basis for \mathbb{R}^{n}.
FALSE The null space of A has dimension n. The dimension of the null space is $n-\operatorname{rank}(A)$ which equals zero.
TRUE (reduced row echelon form) rref(A) is the identity matrix. From the Fundamental Theorem of Invertible Matrices, $\operatorname{rref}(\mathrm{A})$ is the identity matrix.
FALSE There exists a nonzero square matrix B such that $A B=\mathcal{O}$, where \mathcal{O} is the square zero matrix. $\mathbf{B}=\mathbf{A}^{-1} \mathcal{O}=\mathcal{O}$. B must be the zero matrix.
TRUE A^{-1} is an invertible matrix. Since $\left(A^{-1}\right)^{-1}=A$ we know that A and A^{-1} are both invertible.
TRUE A^{T} is an invertible matrix. $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ so since A^{-1} exists then A^{T} is invertible. Also determinanty of A and A^{T} are the same so they are both non-zero.
FALSE There exists an invertible matrix P such that $P^{-1} A P=D$ where D is a diagonal matrix. Repeat after me: "Invertibility and Diagonalizability are unrelated to each other!"
FALSE One of the eigenvalues of A must be zero. None of the eigenvalues of A can be zero, because the determinant equals the product of the eigenvalues and the determinant is non-zero so the product of eigenvalues must be non-zero, which means they are all non-zero.
(b) To prove a statement is TRUE, it must always be true. (c) To prove a statement is FALSE, you just need to find a counter-example. Choose your statement to prove carefully. Note, the premise in each of these statements is that A is a square $n \times n$ invertible matrix, so your proofs must begin with that assumption.
\#2 Subspaces, Orthogonal Complements. (a) The unnamed set \mathcal{V} is a set of vectors \vec{y} such that $\vec{y} A=\overrightarrow{0}$, i.e. the left nusllspace of A. In class we proved that the nullspace of A is a subspace of \mathbb{R}^{n}. In this case, $\operatorname{null}\left(A^{T}\right)$ is a subspace of \mathbb{R}^{m} but this proof follows every proof for showing that a given set is a subpspace: answer three questions. (i) Is $\overrightarrow{0} \in \mathcal{V}$? Yes, because $\overrightarrow{0} A$ equals $\overrightarrow{0}$. (ii) Is \mathcal{V} closed under scalar multiplication? In other words, if $\vec{y} \in \mathcal{V}$ then $c \vec{y} \in \mathcal{V}$? $(c \vec{y}) A=c(\vec{y} A)=c \overrightarrow{0}=\overrightarrow{0}$ (iii) Is \mathcal{V} closed under vector addition? In other words if $\vec{v}, \vec{w} \in \mathcal{V}$ then $(\vec{v}+\vec{w}) \in \mathcal{V}$. Yes, it is closed under vector addition. $\vec{v} A=\overrightarrow{0}$ and $\vec{w} A=\overrightarrow{0}$ so $\vec{v} A+\vec{w} A=(\vec{v}+\vec{w}) A=\overrightarrow{0}(\mathbf{b})$ In order to find $\operatorname{rank}(\mathrm{A})$ you need to know ref(A). Since $\operatorname{rref}(\mathrm{A})=\left[\begin{array}{cccc}1 & 0 & 1 & 5 / 2 \\ 0 & 1 & -1 & 1 / 2 \\ 0 & 0 & 0 & 0\end{array}\right]$ It turns out that $\operatorname{rank}(\mathrm{A})=2$. Once you know rank, immediately you know the dimension of the row space and the column space are equal to the rank $=2$, while the dimension of the nullspace is n (number of columns) minus the rank $=4-2=2$ and the dimension of the left nullspace is m (the number of rows) minus the rank $=3-2=1$. (c) To find bases for \mathcal{V} and \mathcal{V}^{\perp} one needs to know which subspaces they correspond to. $\mathcal{V}=\operatorname{null}\left(A^{T}\right)$ and $\mathcal{V}^{\perp}=\operatorname{col}(A)$ so a basis for column space can be found from rref as $\{(1,0,-3),(-1,2,17)\}$ and a basis for its orthgonal complement is $\{(3,-7,1)\}$ which can be computed from $\operatorname{rref}\left(A^{T}\right)$ or using the cross-product.
\#3 Eigenvalues, Determinants, Diagonalization, Grams-Schmidt Orthogonalization, Orthogonal Matrices, Bases. (a) In order to compute A^{100} you need to find the eigenvalues and eigenvectors of A. $A^{100}=\left[\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1^{100} & 0 \\ 0 & 2^{100}\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}2-2^{100} & -2+2^{101} \\ 1-2^{100} & -1+2^{101}\end{array}\right]$.
An orthogonal matrix has columns which are orthonormal to each other. Starting with $(1 / \sqrt{2}, 0,1 / \sqrt{2})$ one mayb be able to see that $(0,1,0)$ and $(1 / \sqrt{2}, 0,-1 / \sqrt{2})$ to make an orthonormal set in \mathbb{R}^{3}. So $Q=$ $\left[\begin{array}{ccc}1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 0 & 1 & 0 \\ 1 / \sqrt{2} & 0 & -1 / \sqrt{2}\end{array}\right]$ and multiplying $Q Q^{T}$ or $Q^{T} Q$ produces the identity matrix \mathcal{I}. Otherwise, you can use $\{(1 / \sqrt{2}, 0,1 / \sqrt{2}),(0,1,0),(1,0,0)\}$ as your basis for \mathbb{R}^{3} but then, starting with $\vec{a}=(1 / \sqrt{2}, 0,1 / \sqrt{2})$ use Gram-Schmidt orthogonalization to convert this non-orthogonal basis into an orthonormal basis for \mathbb{R}^{3} which become the columns of an orthogonal Q matrix.

