1. Consider the system of equations below, where a is an unknown parameter.

$$ax + 3y = -3$$
$$4x + 6y = 6$$

a. (6 points). Use elimination to form the upper-diagonal form of the augmented coefficient matrix for this system. Back substitute to get solutions for x and y in terms of the parameter a. What assumption(s) about a do you have to make to do this?

$$\begin{pmatrix}
a & 3 & | & -3 \\
4 & 6 & | & 6
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 3 & | & 3 \\
a & 3 & | & -3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 3 & | & 3 \\
0 & 3 - 3a & | & -3 - 3a \\
0 & 3 - 3a & | & -3 - 3a \\
0 & 1 & | & a + 2 \\
0 & 1 & | & a - 2
\end{pmatrix}
\leftarrow
\begin{pmatrix}
2 & 3 & | & 3 \\
0 & 1 & | & a + 2 \\
0 & 2 - a & | & -(2 + a)
\end{pmatrix}$$

$$\begin{cases} 10 : \frac{-6}{a-2} \\ 0 : \frac{-42}{a-2} \end{cases} \qquad x = \frac{6}{2-a} \\ y = \frac{a+2}{a-2}$$

b. (2 points). If a = 0 how many solutions does this system have? Either find the solution(s) or explain why the system can not be solved.

If
$$a=0$$
, $x=\frac{6}{2}=3$ ONE
 $Y=\frac{2}{-2}=-1$ SOLUTION

c. (2 points). If a=2 how many solutions does this system have? Either find the solution(s) or explain why the system can not be solved.