Test 1: Linear Systems

- Math 214 | Friday March 3 2006
Ron Buckmire 2:30pm-3:25pm

Name: K&?/

Directions: Read all problems first before answering any of them.
There are 6 pages in this test. This is a one hour, no-notes,
closed book, test. INo calculators. You must show all rele-
vant work to support your answers. Use complete English sentences
and CLEARLY indicate your final answers to be graded from your
“scratch work.” |

" No. | Score |Maximum |

1 20

2 30

3 20

4 30
BONUS 10
Total 100




1. Span, Linear Independence, Rank. 20 points.
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(b) (4 points.) Given your knowledge of rref(A), what is the rank of the matrix A?
EXPLAIN YOUR ANSWER. '
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(c) (4 points.) Given your knowledge of rref(A), what is the span of the columns of matrix
A? EXPLAIN YOUR ANSWER
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(d) (4 points.) Given your knowledge of rref(A), discuss the linear mdependence of the

columns of the matrix A. EXPLAIN YOUR ANSWER.
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(e) (4 points.) Given your knowledge of rref(A), discuss whether the matrix A™! exists.
EXPLAIN YOUR ANSWER.
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2. Dot product, magnitude, lengths. 30 points.

Suppose the dot product @ ¥ is re-defined to be just the product of the lengths of the vectors
4 and U. Let’s call this new dot product the Buckmire product and denote it

Discuss which of the following statements are true for all vectors @, ¥, @ € R" and all scalars
¢ € R under the Buckmire product.
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3. Matrix Operations. 20 points.

TRUE or FALSE - put your answer in the box (1 point). To receive FULL credit, you must
also give a brief, and correct, explanation in support of your answer! Remember if you think
a statement is TRUE you must prove it is ALWAYS true. If you think a statement is FALSE

then all you have to do is show there exists a counterexample which proves the statement is
FALSE at least once.

Recall the zero matrix @ and identity matrix Z have particular properties in matrix arith-

metic which often (but not always!) correspond to the properties the number zero and the
number one that you know and love.

NOTE: Avis assumed to be a generic (unknown) m X n matrix for every part below.

(a) 5 points. TRUE or FALSE? “If A2=0 then A=0.” |
D 8l ~ O(\(O(): 0:>:8/
Exse | I A= ( > P"(ao)ao N
. L; @/
There thists c AFT f0 whodk A

(b) 5 points. TRUE or FALSE? “If A= O then A2=0."
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(c) 5 points. TRUE or FALSE? “If A> =7 then A=Z71.”
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(d) 5 points. TRUE or FALSE? “If A =T then A2 =Z7.
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4. Parametric equations, lines, planes, subspaces. 30 points.
Consider the object described parametrically by z =t + 1,y = 2t — 3,z = 3t in R®.

(a) (10 points.) Write down a system of three linear equations which has this object as its
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(b) (10 points.) What is the dimension of this object? What is the geometric interpretation
of this solution to your linear system in (a)? Write down a vector equation describing this
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(c) (10 points.) Is this object a subspace of R®*? Prove your answer! ?
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BONUS QUESTION. Linear Independence, Dependence, Inverse. (10 points.)

If possible, write down five different 3 x 3 matrices each one which has one of the following
properties:

(i) MATRIX A: The rows are linearly independent but the columns are linearly independent.
(ii) MATRIX B: The rows are linearly dependent but the columns are linearly independent.
(iii) MATRIX C: The rows are linearly independent but the columns are linearly dependent.
(iv) MATRIX D: The rows are linearly dependent but the columns are linearly dependent.

(v) MATRIX E: The transpose of the matrix equals the inverse of the matrix.

EXPLAIN YOUR ANSWER THOROUGHLY. EXTRA CREDIT POINTS
ARE HARD TO GET. '
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