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SUMMARY
One of the most important operations associated with vectors is the dot product. We shall intro-
duce that, concept and also discuss how to write equations that represent geometric objects like
lines and planes using vectors and the idea of orthogonality.

Dot Product
The dot product is a very useful operation on vectors that can be defined in two different, but
equivalent ways.
Dot Product: Geometric Definition
The dot product of two vectors ~w and ~w can be defined in terms of the magnitudes ||~v|| and ||~w||
and the angle θ between the two vectors where θ is in radians in the range between 0 and π.

~v · ~w = ||~v|| ||~w|| cos θ

Dot Product: Algebraic Definition
Given two vectors ~x and ~y in Rn, ~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn) the dot product
can be computed algebraically:

~x · ~y =
n∑

k=1

xkyk = x1y1 + x2y2 + x3y3 + . . .+ xnyn

NOTE
• The dot product takes as input two vectors but outputs a scalar quantity.

• The dot product includes the product of two magnitudes and the factor cos θ with 0 ≤ θ ≤ π.

QUESTION What is the range of possible values of the dot product of two vectors?

Properties of the Dot Poduct
For any vectors ~u, ~v and ~w in Rn

Positivity: ~u · ~u > 0, (except when ~u = ~0)
Symmetry: ~u · ~v = ~v · ~u
Additivity: (~u+ ~v) · ~w = ~u · ~w + ~v · ~w
Associativity: (r~u) · ~v = r(~u · ~v) = ~u · (r~v), ∀r ∈ R
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Exercise
Let ~a =~i and~b = 2~i+ 2~j. Compute ~a ·~b geometrically and algebraically.

NOTE If we have a vector ~v ∈ R3 we can use the dot product to find the components in the
coordinate directions of ~v = (v1, v2, v3): v1 = ~v ·~i, v2 = ~v ·~j, v3 = ~v · ~k.
Orthogonality
When the dot product is zero this means that the two vectors are orthogonal (i.e. perpendicular)

~v · ~w = 0⇐⇒ Angle between ~v and ~w is 90 degrees

NOTE: ~j · ~k = 0,~i ·~j = 0,~i · ~k = 0. But~i ·~i = 1, ~j ·~j = 1 and ~k · ~k = 1.

Magnitude of a Vector
The dot product can be used to compute the magnitude of a vector easily:

||~x|| =
√
~x · ~x⇐⇒ ||~x||2 = ~x · ~x

GROUPWORK

Determine which, if, any, of the following vectors are perpendicular to one another.
~u =~i+

√
3~k, ~v =~i+

√
3~j, ~w =

√
3~i+~j − ~k

QUESTION Without using the dot product, how can you tell which vector has the largest
magnitude?

Application of the Dot Product: Work Done
The work W done by a force ~F acting on an object through a displacement ~d is W = ~F · ~d.

Application of the Dot Product: Equations of Lines and Planes
One key application of the Dot Product is finding the equation of a plane. If one thinks carefully
about what a plane in R3 looks like it should be very clear that the best way to define a plane is the
set of all points which are orthogonal to the plane’s normal vector. And we know we can use the
dot product to determine when two vectors are orthogonal to each other!

Normal Vector of a Plane in R3

The normal vector of a plane is the vector which is perpendicular to every displacement vector
formed between any two points that lie in that plane.
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Equations of a Plane in R3

The main way we often think of planes in Euclidean space (i.e. the space we are used to living
in where lines are perfectly “straight” and go on forever) is to define a plane in R3 as a two-
dimensional geometric object consisting of the infinite set of points that have the property that the
displacement vector between any two points in the plane is orthogonal to the plane’s normal vector.
The figure below demonstrates a plane with a specific point with position vector ~p = (x0, y0, z0)
and normal vector ~n = (a, b, c).

General Form of the Equation of a Plane in R3

In other words, given a plane with normal vector ~n = a~i + b~j + c~k and the point P0 on the plane
with coordinates (x0, y0, z0) the equation of the plane is

a(x− x0) + b(y − y0) + c(z − z0) = 0 (1)

ax+ by + cz − ax0 − by0 − cz0 = 0

By letting d = ax0 + by0 + cz the above equation (1) can be re-written as

ax+ by + cz = d (2)

This equation (2) is called the general form of the equation of a plane.
NOTE: the coefficients of x, y and z in the general equation of the plane always make up the
components of the normal vector to the plane, i.e. ~n = (a, b, c).
Normal Form of the Equation of a Plane in R3

However, if you look more closely at (1) we can see that if you consider any point P in R3 with
position vector ~p = (x, y, z) and the position vector ~p0 of the specific point P0 in the plane as
(x0, y0, z0) then one could re-write this equation (1) using the dot product as

(~p− ~p0) · ~n = 0 (3)

But this equation (3) can also be written more simply as

~n · ~p = ~n · ~p0 (4)

This last result (4) is known as the normal form of the equation of a plane.
EXAMPLE

Find normal vectors to the following planes: (a) x− y + 2z = 5 (b) z = 5x+ y
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GROUPWORK

McCacllum, pg. 737, Example 5.
(a) Find the equation of the plane perpendicular to ~n = −~i + 3~j + 2~k passing through the point
(1, 0, 4).
(b) Find a vector parallel to the plane.

Equations of a Line in R2 and R3

The main way we often think of lines in Euclidean space is to define a line in Rn as the set of points
composing the one dimensional geometrical object connecting two distinct points in space.

General Form of the Equation of a Line in R2

The general form of the equation of a line L in R2 is

ax+ by = c (5)

In this case the vector ~n =

[
a
b

]
is a normal vector to the direction represented by line L in R2.

Normal Form of the Equation of a Line in R2

The normal form of the equation of a line L in R2 is

~n · (~x− ~p) = 0 or ~n · ~x = ~n · ~p (6)

In the case of Equation 6 the non-zero vector ~n is again a normal vector to the line L and ~p is a
particular given point on the line L. Notice that Equation (6) representing a line in R2 has exactly
the same form as the equations (3) and (4) which represent a plane in R3!

The difference is what space the vectors in question (R2 versus R3) one is referring to. What
equations (6),(3) and (4) have in common is that they represent equations for (n− 1)-dimensional
geometric objects living in Rn.

Vector Form of the Equation of a Line in Rn

The vector form of the equation of a line L in R2 (or Rn) is ~x = ~p+ t~d. In this case the non-zero
vector ~d is a direction vector for the line L, ~p is the position vector for a particular given point on
the line L and ~x is the position vector for any point on the line.
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