SPRING D oo

4. (20 points.) Multiple Integration.

a. (10 points) Evaluate / / ye® dA where R is the first quadrant of the circle of radius 4
R

centered at the origin. (Sketch the region R).

1 1 1-y 1
b. (10 points) Consider / / / dz dy dx = v Re-compute this integral using a different
0o JvzJo

triple integral which represents the same volume.
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3. (20 points.) Iterated Integration.
0 2 1
a. (10 points) Evaluate / / / cos(z+y + 2) — zyz dz dz dy
-3Jo J-1

2 phhe
1
b. (10 points) Evaluate / / = dy dz
1 Jo %




5. (20 points.) Constrained Multivariable Optimization, Lagrange Multipliers
The “geometric mean” of n numbers is defined as f(z1,%2,...,Tn) = YT1T2T3 . .. Tn. SUPPOSE

n
that 1, xs,...,x, are positive numbers such that 5 Ti=T1+ 2o+ T3+ ...2, = C, Where c is

i=1
a constant.

a. (10 points) Find the maximum value of the geometric mean of n positive numbers given the
constraint that their sum must be equal to a constant. [HINT: Consider f™ instead of f!]

b. (10 points) You can deduce from part (a) that the geometric mean of n numbers is always
less than or equal to the arithmetic mean, that is:

1+ 2o+ 2T3+ ...+ Ty
n

YT120T3. .. T <

Under what conditions will the geometric mean be exactly equal to the arithmetic mean of those
same n numbers?
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EXTRA CREDIT (10 points.) Unconstrained Multivariable Optimization
Consider f(z,y) = z* + y* — 4oy + 1.
a. (& points) Find the three critical points of f(z,y).

b. (& points) Use the Second Derivative Test to classify each of the three critical points of
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Contours of ( ,y)=x2+>Q/+y2

.....

(e) Using the picture alone, estimate the points at which the objective function flz,v)
achieves a global minimum on the constraint set g(z,y) = 0 and the values of f there.
EXPLAIN YO_UR ANSWER.
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(f) Use the Method of Lagrange Multipliers to obtain the minimum value of
f(z,y) = 2? + zy + y? on the constraint set g(z,y) =z +y—-2=0.

(g) How would the maximum and minimum on the constraint set change if the constraint
set g(x,y) were changed to h(z,y) = 22 +y* — 47 Find the extrema of f(z,y) = z* +zy +y*
subject to the constraint h(z,y) = 0 and EXPLAIN YOUR ANSWER.
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2. (20 points.) Multiple Integration.

a

The goal of this question is to evaluate / e dz = lim e dz.
0

a—00 0 )
(a) (10 points.) Find I(R) = // e~ @) dg dy when Dg is 22 + 2 < R? (the interior of
Dg

the circle of radius R centered at the origin). HINT: pick a useful coordinate system!

(b) (5 points.) Take your answer I(R) to (b) and then let B — oo. What is

lim e~ () gy dy?
R—o0 Dg

oo

(c) (& points.) Given that / / e~ @) dg dy = {/

2
e dw] then what is the value
—o0
e —m2
of / e dz?
0
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4. (20 points.) Iterated Integration.

1 p1 pl

4

Consider the iterated integral for V = / / / dz dy dx = 3
—1J0 Jz2

() (12 points.) Write down 3 (three) of the 5 (five) other possible triple iterated integrals
which represent the exact same value V. HINT: There is no dependence of z upon y)
DO NOT EVALUATE THESE INTEGRALS.

(b) (8 points.) Use any one of the iterated integrals you wrote down in part (a) to confirm
the value of V.
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2. Multivariable Chain Rule. 25 points.

Consider the functions u(x,y, z) = f(z —y,y— 2,2~ z). Our goal is to show that a function
u with this form satisfies the following famous partial differential equatlon

ou, Bu Bu_
oz  dy 0z

(a) (10 points.) Consider a function u = f(r,s,t) where r = r(z,y,z), s = s(z,y, z) and
t = t(z,y,2) are given. In other words, although w is a function of T, s and t, since each of

these functions is a function of z, y and z one can consider u as a functlon of z, Y and z.

Use the Chain Rule to write down expressions for gu gu nd gu [HINT: draw a “tree

diagram” reflecting the relationships between the variables to assist you.]

(b) (15 points.) Let r = z—y, s =y—z and t = z—z. Use this information and your answer
to (a) to show that u(z,y,2z) = f(z —y,y — 2,z — ) satsfies the equation Ug + Uy +u, = 0.
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5. (20 points.) Constrained Multivariable Optimization, Lagrange Multipliers
Recall the Cobb-Douglas function P(L,K) = bL*K'~® where the total production P of
a certain product depends on the amount of labor L used and the amount K of capital
investment (0 < @ < 1 and b> 0.) ' '

If the cost of a unit of labor is m and the cost of unit of capital is n, given that the production

of the company is fixed at a level Q, what values of L and K will minimize the cost function
C(L,K)=mL+nK?"

a. (10 points) Write down the equations you need to solve simultaneously to find the answef
to the question.

b. (10 points) Solve the equations to find the values of L and K which minimize the cost
function C(L, K). (HINT: Eliminate the Lagrange Multiplier first).




